湖南省衡陽縣達標名校2023-2024學年中考數(shù)學模試卷含解析_第1頁
湖南省衡陽縣達標名校2023-2024學年中考數(shù)學模試卷含解析_第2頁
湖南省衡陽縣達標名校2023-2024學年中考數(shù)學模試卷含解析_第3頁
湖南省衡陽縣達標名校2023-2024學年中考數(shù)學模試卷含解析_第4頁
湖南省衡陽縣達標名校2023-2024學年中考數(shù)學模試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南省衡陽縣達標名校2023-2024學年中考數(shù)學模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(共10小題,每小題3分,共30分)1.在△ABC中,∠C=90°,sinA=,則tanB等于()A. B.C. D.2.如圖,已知兩個全等的直角三角形紙片的直角邊分別為、,將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有()A.3個; B.4個; C.5個; D.6個.3.下列計算正確的是()A.﹣= B.=±2C.a(chǎn)6÷a2=a3 D.(﹣a2)3=﹣a64.若關于,的二元一次方程組的解也是二元一次方程的解,則的值為A. B. C. D.5.將拋物線y=x2﹣x+1先向左平移2個單位長度,再向上平移3個單位長度,則所得拋物線的表達式為()A.y=x2+3x+6 B.y=x2+3x C.y=x2﹣5x+10 D.y=x2﹣5x+46.我省2013年的快遞業(yè)務量為1.2億件,受益于電子商務發(fā)展和法治環(huán)境改善等多重因素,快遞業(yè)務迅猛發(fā)展,2012年增速位居全國第一.若2015年的快遞業(yè)務量達到2.5億件,設2012年與2013年這兩年的平均增長率為x,則下列方程正確的是()A.1.2(1+x)=2.5B.1.2(1+2x)=2.5C.1.2(1+x)2=2.5D.1.2(1+x)+1.2(1+x)2=2.57.如圖,,交于點,平分,交于.若,則

的度數(shù)為()

A.35o B.45o C.55o D.65o8.圓錐的底面直徑是80cm,母線長90cm,則它的側(cè)面積是A. B. C. D.9.學習全等三角形時,數(shù)學興趣小組設計并組織了“生活中的全等”的比賽,全班同學的比賽結果統(tǒng)計如下表:得分(分)60708090100人數(shù)(人)7121083則得分的眾數(shù)和中位數(shù)分別為()A.70分,70分 B.80分,80分 C.70分,80分 D.80分,70分10.目前,世界上能制造出的最小晶體管的長度只有0.00000004m,將0.00000004用科學記數(shù)法表示為()A.0.4×108 B.4×108 C.4×10﹣8 D.﹣4×108二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖所示,三角形ABC的面積為1cm1.AP垂直∠B的平分線BP于P.則與三角形PBC的面積相等的長方形是()A.B.C.D.12.不等式≥-1的正整數(shù)解為________________.13.如圖,在矩形ABCD中,AB=,E是BC的中點,AE⊥BD于點F,則CF的長是_________.14.如圖,圓O的直徑AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的長為________.15.如圖,在平面直角坐標系中,菱形OABC的面積為12,點B在y軸上,點C在反比例函數(shù)y=的圖象上,則k的值為________.16.如圖所示,把一張長方形紙片沿折疊后,點分別落在點的位置.若,則等于________.三、解答題(共8題,共72分)17.(8分)已知,拋物線y=x2﹣x+與x軸分別交于A、B兩點(A點在B點的左側(cè)),交y軸于點F.(1)A點坐標為;B點坐標為;F點坐標為;(2)如圖1,C為第一象限拋物線上一點,連接AC,BF交于點M,若BM=FM,在直線AC下方的拋物線上是否存在點P,使S△ACP=4,若存在,請求出點P的坐標,若不存在,請說明理由;(3)如圖2,D、E是對稱軸右側(cè)第一象限拋物線上的兩點,直線AD、AE分別交y軸于M、N兩點,若OM?ON=,求證:直線DE必經(jīng)過一定點.18.(8分)如圖,△ABC中,∠A=90°,AB=AC=4,D是BC邊上一點,將點D繞點A逆時針旋轉(zhuǎn)60°得到點E,連接CE.(1)當點E在BC邊上時,畫出圖形并求出∠BAD的度數(shù);(2)當△CDE為等腰三角形時,求∠BAD的度數(shù);(3)在點D的運動過程中,求CE的最小值.(參考數(shù)值:sin75°=,cos75°=,tan75°=)19.(8分)孔明同學對本校學生會組織的“為貧困山區(qū)獻愛心”自愿捐款活動進行抽樣調(diào)查,得到了一組學生捐款情況的數(shù)據(jù).如圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計圖,圖中從左到右各長方形的高度之比為3:4:5:10:8,又知此次調(diào)查中捐款30元的學生一共16人.孔明同學調(diào)查的這組學生共有_______人;這組數(shù)據(jù)的眾數(shù)是_____元,中位數(shù)是_____元;若該校有2000名學生,都進行了捐款,估計全校學生共捐款多少元?20.(8分)在中,,是的角平分線,交于點.(1)求的長;(2)求的長.21.(8分)如圖,在平面直角坐標系中,點的坐標為,以點為圓心,8為半徑的圓與軸交于,兩點,過作直線與軸負方向相交成的角,且交軸于點,以點為圓心的圓與軸相切于點.(1)求直線的解析式;(2)將以每秒1個單位的速度沿軸向左平移,當?shù)谝淮闻c外切時,求平移的時間.22.(10分)如圖,△ABC內(nèi)接于⊙O,過點C作BC的垂線交⊙O于D,點E在BC的延長線上,且∠DEC=∠BAC.求證:DE是⊙O的切線;若AC∥DE,當AB=8,CE=2時,求⊙O直徑的長.23.(12分)小昆和小明玩摸牌游戲,游戲規(guī)則如下:有3張背面完全相同,牌面標有數(shù)字1、2、3的紙牌,將紙牌洗勻后背面朝上放在桌面上,隨機抽出一張,記下牌面數(shù)字,放回后洗勻再隨機抽出一張.請用畫樹形圖或列表的方法(只選其中一種),表示出兩次抽出的紙牌數(shù)字可能出現(xiàn)的所有結果;若規(guī)定:兩次抽出的紙牌數(shù)字之和為奇數(shù),則小昆獲勝,兩次抽出的紙牌數(shù)字之和為偶數(shù),則小明獲勝,這個游戲公平嗎?為什么?24.中華文化,源遠流長,在文學方面,《西游記》、《三國演義》、《水滸傳》、《紅樓夢》是我國古代長篇小說中的典型代表,被稱為“四大古典名著”.某中學為了了解學生對四大古典名著的閱讀情況,就“四大古典名著你讀完了幾部”的問題在全校學生中進行了抽樣調(diào)查,根據(jù)調(diào)查結果繪制成如圖所示的兩個不完整的統(tǒng)計圖,請結合圖中信息解決下列問題:(1)本次調(diào)查了名學生,扇形統(tǒng)計圖中“1部”所在扇形的圓心角為度,并補全條形統(tǒng)計圖;(2)此中學共有1600名學生,通過計算預估其中4部都讀完了的學生人數(shù);(3)沒有讀過四大古典名著的兩名學生準備從四大固定名著中各自隨機選擇一部來閱讀,求他們選中同一名著的概率.

參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】法一,依題意△ABC為直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故選B法2,依題意可設a=4,b=3,則c=5,∵tanb=故選B2、B【解析】分析:直接利用軸對稱圖形的性質(zhì)進而分析得出答案.詳解:如圖所示:將這兩個三角形的一組等邊重合,拼合成一個無重疊的幾何圖形,其中軸對稱圖形有4個.故選B.點睛:本題主要考查了全等三角形的性質(zhì)和軸對稱圖形,正確把握軸對稱圖形的性質(zhì)是解題的關鍵.3、D【解析】

根據(jù)二次根式的運算法則,同類二次根式的判斷,開算術平方根,同底數(shù)冪的除法及冪的乘方運算.【詳解】A.不是同類二次根式,不能合并,故A選項錯誤;B.=2≠±2,故B選項錯誤;C.

a6÷a2=a4≠a3,故C選項錯誤;D.

(?a2)3=?a6,故D選項正確.故選D.【點睛】本題主要考查了二次根式的運算法則,開算術平方根,同底數(shù)冪的除法及冪的乘方運算,熟記法則是解題的關鍵.4、B【解析】

將k看做已知數(shù)求出用k表示的x與y,代入2x+3y=6中計算即可得到k的值.【詳解】解:,①②得:,即,將代入①得:,即,將,代入得:,解得:.故選:.【點睛】此題考查了二元一次方程組的解,以及二元一次方程的解,方程的解即為能使方程左右兩邊成立的未知數(shù)的值.5、A【解析】

先將拋物線解析式化為頂點式,左加右減的原則即可.【詳解】y=x當向左平移2個單位長度,再向上平移3個單位長度,得y=x-故選A.【點睛】本題考查二次函數(shù)的平移;掌握平移的法則“左加右減”,二次函數(shù)的平移一定要將解析式化為頂點式進行;6、C【解析】試題解析:設2015年與2016年這兩年的平均增長率為x,由題意得:1.2(1+x)2=2.5,故選C.7、D【解析】分析:根據(jù)平行線的性質(zhì)求得∠BEC的度數(shù),再由角平分線的性質(zhì)即可求得∠CFE的度數(shù).詳解:又∵EF平分∠BEC,.故選D.點睛:本題主要考查了平行線的性質(zhì)和角平分線的定義,熟知平行線的性質(zhì)和角平分線的定義是解題的關鍵.8、D【解析】圓錐的側(cè)面積=×80π×90=3600π(cm2).故選D.9、C【解析】

解:根據(jù)表格中的數(shù)據(jù),可知70出現(xiàn)的次數(shù)最多,可知其眾數(shù)為70分;把數(shù)據(jù)按從小到大排列,可知其中間的兩個的平均數(shù)為80分,故中位數(shù)為80分.故選C.【點睛】本題考查數(shù)據(jù)分析.10、C【解析】

科學記數(shù)法的表示形式為a×10的形式,其中1≤a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】0.00000004=4×10,故選C【點睛】此題考查科學記數(shù)法,難度不大二、填空題(本大題共6個小題,每小題3分,共18分)11、B【解析】

過P點作PE⊥BP,垂足為P,交BC于E,根據(jù)AP垂直∠B的平分線BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以證明兩三角形面積相等,即可證明三角形PBC的面積.【詳解】解:過P點作PE⊥BP,垂足為P,交BC于E,∵AP垂直∠B的平分線BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面積=三角形ABC的面積=cm1,選項中只有B的長方形面積為cm1,故選B.12、1,2,1.【解析】

去分母,移項,合并同類項,系數(shù)化成1即可求出不等式的解集,根據(jù)不等式的解集即可求出答案.【詳解】,

∴1-x≥-2,

∴-x≥-1,

∴x≤1,

∴不等式的正整數(shù)解是1,2,1,

故答案為:1,2,1.【點睛】本題考查了解一元一次不等式和一元一次不等式的整數(shù)解,關鍵是求出不等式的解集.13、【解析】試題解析:∵四邊形ABCD是矩形,∵AE⊥BD,∴△ABE∽△ADB,∵E是BC的中點,過F作FG⊥BC于G,故答案為14、【解析】試題分析:因為OC=OA,所以∠ACO=,所以∠AOC=45°,又直徑垂直于弦,,所以CE=,所以CD=2CE=.考點:1.解直角三角形、2.垂徑定理.15、-6【解析】因為四邊形OABC是菱形,所以對角線互相垂直平分,則點A和點C關于y軸對稱,點C在反比例函數(shù)上,設點C的坐標為(x,),則點A的坐標為(-x,),點B的坐標為(0,),因此AC=-2x,OB=,根據(jù)菱形的面積等于對角線乘積的一半得:,解得16、50°【解析】

先根據(jù)平行線的性質(zhì)得出∠DEF的度數(shù),再根據(jù)翻折變換的性質(zhì)得出∠D′EF的度數(shù),根據(jù)平角的定義即可得出結論.【詳解】∵AD∥BC,∠EFB=65°,

∴∠DEF=65°,

又∵∠DEF=∠D′EF,

∴∠D′EF=65°,

∴∠AED′=50°.【點睛】本題考查翻折變換(折疊問題)和平行線的性質(zhì),解題的關鍵是掌握翻折變換(折疊問題)和平行線的性質(zhì).三、解答題(共8題,共72分)17、(1)(1,0),(3,0),(0,);(2)在直線AC下方的拋物線上不存在點P,使S△ACP=4,見解析;(3)見解析【解析】

(1)根據(jù)坐標軸上點的特點建立方程求解,即可得出結論;(2)在直線AC下方軸x上一點,使S△ACH=4,求出點H坐標,再求出直線AC的解析式,進而得出點H坐標,最后用過點H平行于直線AC的直線與拋物線解析式聯(lián)立求解,即可得出結論;(3)聯(lián)立直線DE的解析式與拋物線解析式聯(lián)立,得出,進而得出,,再由得出,進而求出,同理可得,再根據(jù),即可得出結論.【詳解】(1)針對于拋物線,令x=0,則,∴,令y=0,則,解得,x=1或x=3,∴,綜上所述:,,;(2)由(1)知,,,∵BM=FM,∴,∵,∴直線AC的解析式為:,聯(lián)立拋物線解析式得:,解得:或,∴,如圖1,設H是直線AC下方軸x上一點,AH=a且S△ACH=4,∴,解得:,∴,過H作l∥AC,∴直線l的解析式為,聯(lián)立拋物線解析式,解得,∴,即:在直線AC下方的拋物線上不存在點P,使;(3)如圖2,過D,E分別作x軸的垂線,垂足分別為G,H,設,,直線DE的解析式為,聯(lián)立直線DE的解析式與拋物線解析式聯(lián)立,得,∴,,∵DG⊥x軸,∴DG∥OM,∴,∴,即,∴,同理可得∴,∴,即,∴,∴直線DE的解析式為,∴直線DE必經(jīng)過一定點.【點睛】本題主要考查了二次函數(shù)的綜合應用,熟練掌握二次函數(shù)與一次函數(shù)的綜合應用,交點的求法,待定系數(shù)法求函數(shù)解析式等方法式解決本題的關鍵.18、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD=60°;(3)CE=.【解析】

(1)如圖1中,當點E在BC上時.只要證明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;(2)分兩種情形求解①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形.②如圖3中,當CD=CE時,△DEC是等腰三角形;(3)如圖4中,當E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先確定點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),可得EC的最小值即為線段CM的長(垂線段最短).【詳解】解:(1)如圖1中,當點E在BC上時.

∵AD=AE,∠DAE=60°,∴△ADE是等邊三角形,∴∠ADE=∠AED=60°,∴∠ADB=∠AEC=120°,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,在△ABD和△ACE中,∠B=∠C,∠ADB=∠AEC,AB=AC,∴△BAD≌△CAE,∴∠BAD=∠CAE=(90°-60°)=15°.(2)①如圖2中,當BD=DC時,易知AD=CD=DE,此時△DEC是等腰三角形,∠BAD=∠BAC=45°.

②如圖3中,當CD=CE時,△DEC是等腰三角形.∵AD=AE,∴AC垂直平分線段DE,∴∠ACD=∠ACE=45°,∴∠DCE=90°,∴∠EDC=∠CED=45°,∵∠B=45°,∴∠EDC=∠B,∴DE∥AB,∴∠BAD=∠ADE=60°.

(3)如圖4中,當E在BC上時,E記為E′,D記為D′,連接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.

∵∠AOE=∠DOE′,∠AE′D=∠AEO,∴△AOE∽△DOE′,∴AO:OD=EO:OE',∴AO:EO=OD:OE',∵∠AOD=∠EOE′,∴△AOD∽△EOE′,∴∠EE′O=∠ADO=60°,∴點E的運動軌跡是直線EE′(過點E與BC成60°角的直線上),∴EC的最小值即為線段CM的長(垂線段最短),設E′N=CN=a,則AN=4-a,在Rt△ANE′中,tan75°=AN:NE',∴2+=,∴a=2-,∴CE′=CN=2-.在Rt△CE′M中,CM=CE′?cos30°=,∴CE的最小值為.【點睛】本題考查幾何變換綜合題、等腰直角三角形的性質(zhì)、等邊三角形的性質(zhì)、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、軌跡等知識,解題的關鍵是靈活運用所學知識解決問題,學會用分類討論的思想思考問題,學會利用垂線段最短解決最值問題,屬于中考壓軸題.19、(1)60;(2)20,20;(3)38000【解析】

(1)利用從左到右各長方形高度之比為3:4:5:10:8,可設捐5元、10元、15元、20元和30元的人數(shù)分別為3x、4x、5x、10x、8x,則根據(jù)題意得8x=1,解得x=2,然后計算3x+4x+5x++10x+8x即可;(2)先確定各組的人數(shù),然后根據(jù)中位數(shù)和眾數(shù)的定義求解;(3)先計算出樣本的加權平均數(shù),然后利用樣本平均數(shù)估計總體,用2000乘以樣本平均數(shù)即可.【詳解】(1)設捐5元、10元、15元、20元和30元的人數(shù)分別為3x、4x、5x、10x、8x,則8x=1,解得:x=2,∴3x+4x+5x+10x+8x=30x=30×2=60(人);(2)捐5元、10元、15元、20元和30元的人數(shù)分別為6,8,10,20,1.∵20出現(xiàn)次數(shù)最多,∴眾數(shù)為20元;∵共有60個數(shù)據(jù),第30個和第31個數(shù)據(jù)落在第四組內(nèi),∴中位數(shù)為20元;(3)2000=38000(元),∴估算全校學生共捐款38000元.【點睛】本題考查了條形統(tǒng)計圖:條形統(tǒng)計圖是用線段長度表示數(shù)據(jù),根據(jù)數(shù)量的多少畫成長短不同的矩形直條,然后按順序把這些直條排列起來.也考查了樣本估計總體、中位數(shù)與眾數(shù).20、(1)10;(2)的長為【解析】

(1)利用勾股定理求解;(2)過點作于,利用角平分線的性質(zhì)得到CD=DE,然后根據(jù)HL定理證明,設,根據(jù)勾股定理列方程求解.【詳解】解:(1)在中,;(2)過點作于,平分,在和中,.設,則在中,解得即的長為【點睛】本題考查了角平分線上的點到角的兩邊距離相等的性質(zhì),勾股定理,全等三角形的判定與性質(zhì),難點在于(2)多次利用勾股定理.21、(1)直線的解析式為:.(2)平移的時間為5秒.【解析】

(1)求直線的解析式,可以先求出A、C兩點的坐標,就可以根據(jù)待定系數(shù)法求出函數(shù)的解析式.(2)設⊙O2平移t秒后到⊙O3處與⊙O1第一次外切于點P,⊙O3與x軸相切于D1點,連接O1O3,O3D1.在直角△O1O3D1中,根據(jù)勾股定理,就可以求出O1D1,進而求出D1D的長,得到平移的時間.【詳解】(1)由題意得,∴點坐標為.∵在中,,,∴點的坐標為.設直線的解析式為,由過、兩點,得,解得,∴直線的解析式為:.(2)如圖,設平移秒后到處與第一次外切于點,與軸相切于點,連接,.則,∵軸,∴,在中,.∵,∴,∴(秒),∴平移的時間為5秒.【點睛】本題綜合了待定系數(shù)法求函數(shù)解析式,以及圓的位置關系,其中兩圓相切時的輔助線的作法是經(jīng)常用到的.22、(1)見解析;(2)⊙O直徑的長是4.【解析】

(1)先判斷出BD是圓O的直徑,再判斷出BD⊥DE,即可得出結論;

(2)先判斷出AC⊥BD,進而求出BC=AB=8,進而判斷出△BDC∽△BED,求出BD,即可得出結論.【詳解】證明:(1)連接BD,交AC于F,∵DC⊥BE,∴∠BC

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論