湖南省邵陽市邵東縣創(chuàng)新實驗學校2024屆高考考前提分數學仿真卷含解析_第1頁
湖南省邵陽市邵東縣創(chuàng)新實驗學校2024屆高考考前提分數學仿真卷含解析_第2頁
湖南省邵陽市邵東縣創(chuàng)新實驗學校2024屆高考考前提分數學仿真卷含解析_第3頁
湖南省邵陽市邵東縣創(chuàng)新實驗學校2024屆高考考前提分數學仿真卷含解析_第4頁
湖南省邵陽市邵東縣創(chuàng)新實驗學校2024屆高考考前提分數學仿真卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

湖南省邵陽市邵東縣創(chuàng)新實驗學校2024屆高考考前提分數學仿真卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在中,,是上的一點,若,則實數的值為()A. B. C. D.2.如圖是一個幾何體的三視圖,則該幾何體的體積為()A. B. C. D.3.已知為一條直線,為兩個不同的平面,則下列說法正確的是()A.若,則 B.若,則C.若,則 D.若,則4.在直三棱柱中,己知,,,則異面直線與所成的角為()A. B. C. D.5.命題:存在實數,對任意實數,使得恒成立;:,為奇函數,則下列命題是真命題的是()A. B. C. D.6.若復數滿足,復數的共軛復數是,則()A.1 B.0 C. D.7.公差不為零的等差數列{an}中,a1+a2+a5=13,且a1、a2、a5成等比數列,則數列{an}的公差等于()A.1 B.2 C.3 D.48.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.59.我國宋代數學家秦九韶(1202-1261)在《數書九章》(1247)一書中提出“三斜求積術”,即:以少廣求之,以小斜冪并大斜冪減中斜冪,余半之,自乘于上;以小斜冪乘大斜冪減上,余四約之,為實;一為從隅,開平方得積.其實質是根據三角形的三邊長,,求三角形面積,即.若的面積,,,則等于()A. B. C.或 D.或10.若不相等的非零實數,,成等差數列,且,,成等比數列,則()A. B. C.2 D.11.在直角坐標系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數m的最小值是()A. B.3 C. D.12.已知雙曲線的左、右焦點分別為,,點P是C的右支上一點,連接與y軸交于點M,若(O為坐標原點),,則雙曲線C的漸近線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.《九章算術》中,將四個面都為直角三角形的四面體稱為鱉臑,如圖,在鱉臑中,平面,,且,過點分別作于點,于點,連接,則三棱錐的體積的最大值為__________.14.從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,則抽得的第一張卡片上的數不小于第二張卡片上的數的概率為__________.15.若函數滿足:①是偶函數;②的圖象關于點對稱.則同時滿足①②的,的一組值可以分別是__________.16.平行四邊形中,,為邊上一點(不與重合),將平行四邊形沿折起,使五點均在一個球面上,當四棱錐體積最大時,球的表面積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的左焦點坐標為,,分別是橢圓的左,右頂點,是橢圓上異于,的一點,且,所在直線斜率之積為.(1)求橢圓的方程;(2)過點作兩條直線,分別交橢圓于,兩點(異于點).當直線,的斜率之和為定值時,直線是否恒過定點?若是,求出定點坐標;若不是,請說明理.18.(12分)在中,為邊上一點,,.(1)求;(2)若,,求.19.(12分)已知橢圓()的離心率為,且經過點.(1)求橢圓的方程;(2)過點作直線與橢圓交于不同的兩點,,試問在軸上是否存在定點使得直線與直線恰關于軸對稱?若存在,求出點的坐標;若不存在,說明理由.20.(12分)已知函數(1)若,不等式的解集;(2)若,求實數的取值范圍.21.(12分)在三棱柱中,,,,且.(1)求證:平面平面;(2)設二面角的大小為,求的值.22.(10分)已知,,動點滿足直線與直線的斜率之積為,設點的軌跡為曲線.(1)求曲線的方程;(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

變形為,由得,轉化在中,利用三點共線可得.【詳解】解:依題:,又三點共線,,解得.故選:.【點睛】本題考查平面向量基本定理及用向量共線定理求參數.思路是(1)先選擇一組基底,并運用該基底將條件和結論表示成向量的形式,再通過向量的運算來解決.利用向量共線定理及向量相等的條件列方程(組)求參數的值.(2)直線的向量式參數方程:三點共線?(為平面內任一點,)2、A【解析】

根據三視圖可得幾何體為直三棱柱,根據三視圖中的數據直接利用公式可求體積.【詳解】由三視圖可知幾何體為直三棱柱,直觀圖如圖所示:其中,底面為直角三角形,,,高為.∴該幾何體的體積為故選:A.【點睛】本題考查三視圖及棱柱的體積,屬于基礎題.3、D【解析】A.若,則或,故A錯誤;B.若,則或故B錯誤;C.若,則或,或與相交;D.若,則,正確.故選D.4、C【解析】

由條件可看出,則為異面直線與所成的角,可證得三角形中,,解得從而得出異面直線與所成的角.【詳解】連接,,如圖:又,則為異面直線與所成的角.因為且三棱柱為直三棱柱,∴∴面,∴,又,,∴,∴,解得.故選C【點睛】考查直三棱柱的定義,線面垂直的性質,考查了異面直線所成角的概念及求法,考查了邏輯推理能力,屬于基礎題.5、A【解析】

分別判斷命題和的真假性,然后根據含有邏輯聯結詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數,故為真命題.所以為真命題.、、都是假命題.故選:A【點睛】本小題主要考查誘導公式,考查函數的奇偶性,考查含有邏輯聯結詞命題真假性的判斷,屬于基礎題.6、C【解析】

根據復數代數形式的運算法則求出,再根據共軛復數的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數代數形式的運算法則,考查共軛復數的概念,屬于基礎題.7、B【解析】

設數列的公差為.由,成等比數列,列關于的方程組,即求公差.【詳解】設數列的公差為,①.成等比數列,②,解①②可得.故選:.【點睛】本題考查等差數列基本量的計算,屬于基礎題.8、B【解析】

還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.9、C【解析】

將,,,代入,解得,再分類討論,利用余弦弦定理求,再用平方關系求解.【詳解】已知,,,代入,得,即,解得,當時,由余弦弦定理得:,.當時,由余弦弦定理得:,.故選:C【點睛】本題主要考查余弦定理和平方關系,還考查了對數學史的理解能力,屬于基礎題.10、A【解析】

由題意,可得,,消去得,可得,繼而得到,代入即得解【詳解】由,,成等差數列,所以,又,,成等比數列,所以,消去得,所以,解得或,因為,,是不相等的非零實數,所以,此時,所以.故選:A【點睛】本題考查了等差等比數列的綜合應用,考查了學生概念理解,轉化劃歸,數學運算的能力,屬于中檔題.11、D【解析】

設點,由,得關于的方程.由題意,該方程有解,則,求出正實數m的取值范圍,即求正實數m的最小值.【詳解】由題意,設點.,即,整理得,則,解得或..故選:.【點睛】本題考查直線與方程,考查平面內兩點間距離公式,屬于中檔題.12、C【解析】

利用三角形與相似得,結合雙曲線的定義求得的關系,從而求得雙曲線的漸近線方程?!驹斀狻吭O,,由,與相似,所以,即,又因為,所以,,所以,即,,所以雙曲線C的漸近線方程為.故選:C.【點睛】本題考查雙曲線幾何性質、漸近線方程求解,考查數形結合思想,考查邏輯推理能力和運算求解能力。二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由已知可得△AEF、△PEF均為直角三角形,且AF=2,由基本不等式可得當AE=EF=2時,△AEF的面積最大,然后由棱錐體積公式可求得體積最大值.【詳解】由PA⊥平面ABC,得PA⊥BC,又AB⊥BC,且PA∩AB=A,∴BC⊥平面PAB,則BC⊥AE,又PB⊥AE,則AE⊥平面PBC,于是AE⊥EF,且AE⊥PC,結合條件AF⊥PC,得PC⊥平面AEF,∴△AEF、△PEF均為直角三角形,由已知得AF=2,而S△AEF=(AE2+EF2)=AF2=2,當且僅當AE=EF=2時,取“=”,此時△AEF的面積最大,三棱錐P﹣AEF的體積的最大值為:VP﹣AEF===.故答案為【點睛】本題主要考查直線與平面垂直的判定,基本不等式的應用,同時考查了空間想象能力、計算能力和邏輯推理能力,屬于中檔題.14、【解析】

基本事件總數,抽得的第一張卡片上的數不小于第二張卡片上的數包含的基本事件有10種,由此能求出抽得的第一張卡片上的數不小于第二張卡片上的數的概率.【詳解】從分別寫有1,2,3,4的4張卡片中隨機抽取1張,放回后再隨機抽取1張,基本事件總數,抽得的第一張卡片上的數不小于第二張卡片上的數包含的基本事件有10種,分別為:,,,,,,,,,,則抽得的第一張卡片上的數不小于第二張卡片上的數的概率為.故答案為:【點睛】本題考查古典概型概率的求法,考查運算求解能力,求解時注意辨別概率的模型.15、,【解析】

根據是偶函數和的圖象關于點對稱,即可求出滿足條件的和.【詳解】由是偶函數及,可取,則,由的圖象關于點對稱,得,,即,,可取.故,的一組值可以分別是,.故答案為:,.【點睛】本題主要考查了正弦型三角函數的性質,屬于基礎題.16、【解析】

依題意可得、、、四點共圓,即可得到,從而得到三角形為正三角形,利用余弦定理可得,且,要使四棱錐體積最大,當且僅當面面時體積取得最大值,利用正弦定理求出的外接圓的半徑,再又可證面,則外接球的半徑,即可求出球的表面積;【詳解】解:依題意可得、、、四點共圓,所以因為,所以,,所以三角形為正三角形,則,,利用余弦定理得即,解得,則所以,當面面時,取得最大,所以的外接圓的半徑,又面面,,且面面,面所以面,所以外接球的半徑所以故答案為:【點睛】本題考查多面體的外接球的相關計算,正弦定理、余弦定理的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)直線過定點【解析】

(1),再由,解方程組即可;(2)設,,由,得,由直線MN的方程與橢圓方程聯立得到根與系數的關系,代入計算即可.【詳解】(1)由題意知:,又,且解得,,∴橢圓方程為,(2)當直線的斜率存在時,設其方程為,設,,由,得.則,(*)由,得,整理可得(*)代入得,整理可得,又,∴,即,∴直線過點當直線的斜率不存在時,設直線的方程為,,,其中,∴,由,得,所以∴當直線的斜率不存在時,直線也過定點綜上所述,直線過定點.【點睛】本題考查求橢圓的標準方程以及直線與橢圓位置關系中的定點問題,在處理直線與橢圓的位置關系的大題時,一般要利用根與系數的關系來求解,本題是一道中檔題.18、(1);(2)4【解析】

(1),利用兩角差的正弦公式計算即可;(2)設,在中,用正弦定理將用x表示,在中用一次余弦定理即可解決.【詳解】(1)∵,∴,所以,.(2)∵,∴設,,在中,由正弦定理得,,∴,∴,∵,∴∴.【點睛】本題考查兩角差的正弦公式以及正余弦定理解三角形,考查學生的運算求解能力,是一道容易題.19、(1)(2)見解析【解析】

(1)由題得a,b,c的方程組求解即可(2)直線與直線恰關于軸對稱,等價于的斜率互為相反數,即,整理.設直線的方程為,與橢圓聯立,將韋達定理代入整理即可.【詳解】(1)由題意可得,,又,解得,.所以,橢圓的方程為(2)存在定點,滿足直線與直線恰關于軸對稱.設直線的方程為,與橢圓聯立,整理得,.設,,定點.(依題意則由韋達定理可得,,.直線與直線恰關于軸對稱,等價于的斜率互為相反數.所以,,即得.又,,所以,,整理得,.從而可得,,即,所以,當,即時,直線與直線恰關于軸對稱成立.特別地,當直線為軸時,也符合題意.綜上所述,存在軸上的定點,滿足直線與直線恰關于軸對稱.【點睛】本題考查橢圓方程,直線與橢圓位置關系,熟記橢圓方程簡單性質,熟練轉化題目條件,準確計算是關鍵,是中檔題.20、(1)(2)【解析】

(1)依題意可得,再用零點分段法分類討論可得;(2)依題意可得對恒成立,根據絕對值的幾何意義將絕對值去掉,分別求出解集,則兩解集的并集為,得到不等式即可解得;【詳解】解:(1)若,,則,即,當時,原不等式等價于,解得當時,原不等式等價于,解得,所以;當時,原不等式等價于,解得;綜上,原不等式的解集為;(2)即,得或,由解得,由解得,要使得的解集為,則解得,故的取值范圍是.【點睛】本題考查絕對值不等式的解法,著重考查等價轉化思想與分類討論思想的綜合應用,屬于中檔題.21、(1)證明見解析;(2).【解析】

(1)要證明平面平面,只需證明平面即可;(2)取的中點D,連接BD,以B為原點,以,,的方向分別為x,y,z軸的正方向,建立空間直角坐標系,分別計算平面的法向量為與平面的法向量為,利用夾角公式計算即可.【詳解】(1)在中,,所以,即.因為,,,所以.所以,即.又,所以平面.又平面,所以平面平面.(2)由題意知,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論