安徽省合肥市肥西縣重點名校2023-2024學年中考數(shù)學適應性模擬試題含解析_第1頁
安徽省合肥市肥西縣重點名校2023-2024學年中考數(shù)學適應性模擬試題含解析_第2頁
安徽省合肥市肥西縣重點名校2023-2024學年中考數(shù)學適應性模擬試題含解析_第3頁
安徽省合肥市肥西縣重點名校2023-2024學年中考數(shù)學適應性模擬試題含解析_第4頁
安徽省合肥市肥西縣重點名校2023-2024學年中考數(shù)學適應性模擬試題含解析_第5頁
已閱讀5頁,還剩22頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省合肥市肥西縣重點名校2023-2024學年中考數(shù)學適應性模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.若一次函數(shù)的圖像過第一、三、四象限,則函數(shù)()A.有最大值 B.有最大值 C.有最小值 D.有最小值2.如圖,平行于BC的直線DE把△ABC分成面積相等的兩部分,則的值為()A.1 B. C.-1 D.+13.如圖,AD,CE分別是△ABC的中線和角平分線.若AB=AC,∠CAD=20°,則∠ACE的度數(shù)是()A.20° B.35° C.40° D.70°4.如圖,直線a∥b,點A在直線b上,∠BAC=100°,∠BAC的兩邊與直線a分別交于B、C兩點,若∠2=32°,則∠1的大小為()A.32° B.42° C.46° D.48°5.已知實數(shù)a、b滿足,則A. B. C. D.6.已知平面內不同的兩點A(a+2,4)和B(3,2a+2)到x軸的距離相等,則a的值為(

)A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣57.兩個一次函數(shù),,它們在同一直角坐標系中的圖象大致是()A. B. C. D.8.如圖,直線l1、l2、l3表示三條相互交叉的公路,現(xiàn)要建一個貨物中轉站,要求它到三條公路的距離相等,則供選擇的地址有()A.1處 B.2處 C.3處 D.4處9.為迎接中考體育加試,小剛和小亮分別統(tǒng)計了自己最近10次跳繩比賽,下列統(tǒng)計量中能用來比較兩人成績穩(wěn)定程度的是()A.平均數(shù)B.中位數(shù)C.眾數(shù)D.方差10.計算(-18)÷9的值是()A.-9 B.-27 C.-2 D.211.下列運算結果為正數(shù)的是()A.1+(–2) B.1–(–2) C.1×(–2) D.1÷(–2)12.已知一個多邊形的內角和是外角和的2倍,則此多邊形的邊數(shù)為()A.6 B.7 C.8 D.9二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,動點P從點A出發(fā),沿AB方向以每秒cm的速度向終點B運動;同時,動點Q從點B出發(fā)沿BC方向以每秒lcm的速度向終點C運動,將△PQC沿BC翻折,點P的對應點為點P′,設Q點運動的時間為t秒,若四邊形QP′CP為菱形,則t的值為_____.14.如圖,在平面直角坐標系中,點A和點C分別在y軸和x軸正半軸上,以OA、OC為邊作矩形OABC,雙曲線(>0)交AB于點E,AE︰EB=1︰3.則矩形OABC的面積是__________.15.如圖,正方形ABCD的邊長為4,點M在邊DC上,M、N兩點關于對角線AC對稱,若DM=1,則tan∠ADN=.16.當﹣4≤x≤2時,函數(shù)y=﹣(x+3)2+2的取值范圍為_____________.17.二次函數(shù)的圖象與x軸有____個交點

.18.計算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,歸納各計算結果中的個位數(shù)字規(guī)律,猜測22019﹣1的個位數(shù)字是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.求此拋物線的解析式;已知點D在第四象限的拋物線上,求點D關于直線BC對稱的點D’的坐標;在(2)的條件下,連結BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.20.(6分)如圖,已知點D在反比例函數(shù)y=的圖象上,過點D作x軸的平行線交y軸于點B(0,3).過點A(5,0)的直線y=kx+b與y軸于點C,且BD=OC,tan∠OAC=.(1)求反比例函數(shù)y=和直線y=kx+b的解析式;(2)連接CD,試判斷線段AC與線段CD的關系,并說明理由;(3)點E為x軸上點A右側的一點,且AE=OC,連接BE交直線CA與點M,求∠BMC的度數(shù).21.(6分)如圖,我們把一個半圓和拋物線的一部分圍成的封閉圖形稱為“果圓”,已知分別為“果圓”與坐標軸的交點,直線與“果圓”中的拋物線交于兩點(1)求“果圓”中拋物線的解析式,并直接寫出“果圓”被軸截得的線段的長;(2)如圖,為直線下方“果圓”上一點,連接,設與交于,的面積記為,的面積即為,求的最小值(3)“果圓”上是否存在點,使,如果存在,直接寫出點坐標,如果不存在,請說明理由22.(8分)如圖,在?ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).求證:△ADE≌△CBF;求證:四邊形BFDE為矩形.23.(8分)如圖,已知點C是以AB為直徑的⊙O上一點,CH⊥AB于點H,過點B作⊙O的切線交直線AC于點D,點E為CH的中點,連接AE并延長交BD于點F,直線CF交AB的延長線于G.(1)求證:AE?FD=AF?EC;(2)求證:FC=FB;(3)若FB=FE=2,求⊙O的半徑r的長.24.(10分)如圖1,在等邊三角形中,為中線,點在線段上運動,將線段繞點順時針旋轉,使得點的對應點落在射線上,連接,設(且).(1)當時,①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數(shù)量關系,并加以證明;(2)當時,直接寫出線段,,之間的數(shù)量關系.25.(10分)如圖,AC=DC,BC=EC,∠ACD=∠BCE.求證:∠A=∠D.26.(12分)某校為了解全校學生對新聞、體育、動畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機選取該校部分學生進行調查,要求每名學生從中選出一類最喜愛的電視節(jié)目,以下是根據(jù)調查結果繪制的不完整統(tǒng)計表:節(jié)目代號ABCDE節(jié)目類型新聞體育動畫娛樂戲曲喜愛人數(shù)1230m549請你根據(jù)以上的信息,回答下列問題:(1)被調查學生的總數(shù)為人,統(tǒng)計表中m的值為.扇形統(tǒng)計圖中n的值為;(2)被調查學生中,最喜愛電視節(jié)目的“眾數(shù)”;(3)該校共有2000名學生,根據(jù)調查結果,估計該校最喜愛新聞節(jié)目的學生人數(shù).27.(12分)如圖,將邊長為m的正方形紙板沿虛線剪成兩個小正方形和兩個矩形,拿掉邊長為n的小正方形紙板后,將剩下的三塊拼成新的矩形.用含m或n的代數(shù)式表示拼成矩形的周長;m=7,n=4,求拼成矩形的面積.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、B【解析】

解:∵一次函數(shù)y=(m+1)x+m的圖象過第一、三、四象限,∴m+1>0,m<0,即-1<m<0,∴函數(shù)有最大值,∴最大值為,故選B.2、C【解析】【分析】由DE∥BC可得出△ADE∽△ABC,利用相似三角形的性質結合S△ADE=S四邊形BCED,可得出,結合BD=AB﹣AD即可求出的值.【詳解】∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴,∵S△ADE=S四邊形BCED,S△ABC=S△ADE+S四邊形BCED,∴,∴,故選C.【點睛】本題考查了相似三角形的判定與性質,牢記相似三角形的面積比等于相似比的平方是解題的關鍵.3、B【解析】

先根據(jù)等腰三角形的性質以及三角形內角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分線定義即可得出∠ACE=∠ACB=35°.【詳解】∵AD是△ABC的中線,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分線,∴∠ACE=∠ACB=35°.故選B.【點睛】本題考查了等腰三角形的兩個底角相等的性質,等腰三角形的頂角平分線、底邊上的中線、底邊上的高相互重合的性質,三角形內角和定理以及角平分線定義,求出∠ACB=70°是解題的關鍵.4、D【解析】

根據(jù)平行線的性質與對頂角的性質求解即可.【詳解】∵a∥b,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案選D.【點睛】本題考查了平行線的性質,解題的關鍵是熟練的掌握平行線的性質與對頂角的性質.5、C【解析】

根據(jù)不等式的性質進行判斷.【詳解】解:A、,但不一定成立,例如:,故本選項錯誤;

B、,但不一定成立,例如:,,故本選項錯誤;

C、時,成立,故本選項正確;

D、時,成立,則不一定成立,故本選項錯誤;

故選C.【點睛】考查了不等式的性質要認真弄清不等式的基本性質與等式的基本性質的異同,特別是在不等式兩邊同乘以或除以同一個數(shù)時,不僅要考慮這個數(shù)不等于0,而且必須先確定這個數(shù)是正數(shù)還是負數(shù),如果是負數(shù),不等號的方向必須改變.6、A【解析】分析:根據(jù)點A(a+2,4)和B(3,2a+2)到x軸的距離相等,得到4=|2a+2|,即可解答.詳解:∵點A(a+2,4)和B(3,2a+2)到x軸的距離相等,∴4=|2a+2|,a+2≠3,解得:a=?3,故選A.點睛:考查點的坐標的相關知識;用到的知識點為:到x軸和y軸的距離相等的點的橫縱坐標相等或互為相反數(shù).7、B【解析】

根據(jù)各選項中的函數(shù)圖象判斷出a、b的符號,然后分別確定出兩直線經過的象限以及與y軸的交點位置,即可得解.【詳解】解:由圖可知,A、B、C選項兩直線一條經過第一三象限,另一條經過第二四象限,

所以,a、b異號,

所以,經過第一三象限的直線與y軸負半軸相交,經過第二四象限的直線與y軸正半軸相交,

B選項符合,

D選項,a、b都經過第二、四象限,

所以,兩直線都與y軸負半軸相交,不符合.

故選:B.【點睛】本題考查了一次函數(shù)的圖象,一次函數(shù)y=kx+b(k≠0),k>0時,一次函數(shù)圖象經過第一三象限,k<0時,一次函數(shù)圖象經過第二四象限,b>0時與y軸正半軸相交,b<0時與y軸負半軸相交.8、D【解析】

到三條相互交叉的公路距離相等的地點應是三條角平分線的交點.把三條公路的中心部位看作三角形,那么這個三角形兩個內角平分線的交點以及三個外角兩兩平分線的交點都滿足要求.【詳解】滿足條件的有:(1)三角形兩個內角平分線的交點,共一處;(2)三個外角兩兩平分線的交點,共三處.如圖所示,故選D.【點睛】本題考查了角平分線的性質;這是一道生活聯(lián)系實際的問題,解答此類題目時最直接的判斷就是三角形的角平分線,很容易漏掉外角平分線,解答時一定要注意,不要漏解.9、D【解析】

根據(jù)方差反映數(shù)據(jù)的波動情況即可解答.【詳解】由于方差反映數(shù)據(jù)的波動情況,所以比較兩人成績穩(wěn)定程度的數(shù)據(jù)是方差.故選D.【點睛】本題主要考查了統(tǒng)計的有關知識,主要包括平均數(shù)、中位數(shù)、眾數(shù)、方差.反映數(shù)據(jù)集中程度的統(tǒng)計量有平均數(shù)、中位數(shù)、眾數(shù)、方差等,各有局限性,因此要對統(tǒng)計量進行合理的選擇和恰當?shù)倪\用.10、C【解析】

直接利用有理數(shù)的除法運算法則計算得出答案.【詳解】解:(-18)÷9=-1.

故選:C.【點睛】此題主要考查了有理數(shù)的除法運算,正確掌握運算法則是解題關鍵.11、B【解析】

分別根據(jù)有理數(shù)的加、減、乘、除運算法則計算可得.【詳解】解:A、1+(﹣2)=﹣(2﹣1)=﹣1,結果為負數(shù);B、1﹣(﹣2)=1+2=3,結果為正數(shù);C、1×(﹣2)=﹣1×2=﹣2,結果為負數(shù);D、1÷(﹣2)=﹣1÷2=﹣,結果為負數(shù);故選B.【點睛】本題主要考查有理數(shù)的混合運算,熟練掌握有理數(shù)的四則運算法則是解題的關鍵.12、A【解析】試題分析:根據(jù)多邊形的外角和是310°,即可求得多邊形的內角的度數(shù)為720°,依據(jù)多邊形的內角和公式列方程即可得(n﹣2)180°=720°,解得:n=1.故選A.考點:多邊形的內角和定理以及多邊形的外角和定理二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】作PD⊥BC于D,PE⊥AC于E,如圖,AP=t,BQ=tcm,(0≤t<6)∵∠C=90°,AC=BC=6cm,∴△ABC為直角三角形,∴∠A=∠B=45°,∴△APE和△PBD為等腰直角三角形,∴PE=AE=AP=tcm,BD=PD,∴CE=AC﹣AE=(6﹣t)cm,∵四邊形PECD為矩形,∴PD=EC=(6﹣t)cm,∴BD=(6﹣t)cm,∴QD=BD﹣BQ=(6﹣1t)cm,在Rt△PCE中,PC1=PE1+CE1=t1+(6﹣t)1,在Rt△PDQ中,PQ1=PD1+DQ1=(6﹣t)1+(6﹣1t)1,∵四邊形QPCP′為菱形,∴PQ=PC,∴t1+(6﹣t)1=(6﹣t)1+(6﹣1t)1,∴t1=1,t1=6(舍去),∴t的值為1.故答案為1.【點睛】

此題主要考查了菱形的性質,勾股定理,關鍵是要熟記定理的內容并會應用.14、1【解析】

根據(jù)反比例函數(shù)圖象上點的坐標特征設E點坐標為(t,),則利用AE:EB=1:3,B點坐標可表示為(4t,),然后根據(jù)矩形面積公式計算.【詳解】設E點坐標為(t,),

∵AE:EB=1:3,

∴B點坐標為(4t,),

∴矩形OABC的面積=4t?=1.

故答案是:1.【點睛】考查了反比例函數(shù)y=(k≠0)系數(shù)k的幾何意義:從反比例函數(shù)y=(k≠0)圖象上任意一點向x軸和y軸作垂線,垂線與坐標軸所圍成的矩形面積為|k|.15、【解析】

M、N兩點關于對角線AC對稱,所以CM=CN,進而求出CN的長度.再利用∠ADN=∠DNC即可求得tan∠ADN.【詳解】解:在正方形ABCD中,BC=CD=1.

∵DM=1,

∴CM=2,

∵M、N兩點關于對角線AC對稱,

∴CN=CM=2.

∵AD∥BC,

∴∠ADN=∠DNC,故答案為【點睛】本題綜合考查了正方形的性質,軸對稱的性質以及銳角三角函數(shù)的定義.16、-23≤y≤2【解析】

先根據(jù)a=-1判斷出拋物線的開口向下,故有最大值,可知對稱軸x=-3,再根據(jù)-4≤x≤2,可知當x=-3時y最大,把x=2時y最小代入即可得出結論.【詳解】解:∵a=-1,

∴拋物線的開口向下,故有最大值,

∵對稱軸x=-3,

∴當x=-3時y最大為2,

當x=2時y最小為-23,

∴函數(shù)y的取值范圍為-23≤y≤2,故答案為:-23≤y≤2.【點睛】本題考查二次函數(shù)的性質,掌握拋物線的開口方向、對稱軸以及增減性是解題關鍵.17、2【解析】【分析】根據(jù)一元二次方程x2+mx+m-2=0的根的判別式的符號進行判定二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的個數(shù).【詳解】二次函數(shù)y=x2+mx+m-2的圖象與x軸交點的縱坐標是零,即當y=0時,x2+mx+m-2=0,∵△=m2-4(m-2)=(m-2)2+4>0,∴一元二次方程x2+mx+m-2=0有兩個不相等是實數(shù)根,即二次函數(shù)y=x2+mx+m-2的圖象與x軸有2個交點,故答案為:2.【點睛】本題考查了拋物線與x軸的交點.二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)的交點與一元二次方程ax2+bx+c=0根之間的關系.△=b2-4ac決定拋物線與x軸的交點個數(shù).△=b2-4ac>0時,拋物線與x軸有2個交點;△=b2-4ac=0時,拋物線與x軸有1個交點;△=b2-4ac<0時,拋物線與x軸沒有交點.18、1【解析】

觀察給出的數(shù),發(fā)現(xiàn)個位數(shù)是循環(huán)的,然后再看2019÷4的余數(shù),即可求解.【詳解】由給出的這組數(shù)21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…,個位數(shù)字1,3,1,5循環(huán)出現(xiàn),四個一組,2019÷4=504…3,∴22019﹣1的個位數(shù)是1.故答案為1.【點睛】本題考查數(shù)的循環(huán)規(guī)律,確定循環(huán)規(guī)律,找準余數(shù)是解題的關鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】

(1)將A(?1,0)、C(0,?3)兩點坐標代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點D關于直線BC對稱的點D'的坐標;(3)分兩種情形①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.【詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點D關于直線BC對稱的點D'(0,?1);(3)存在.滿足條件的點P有兩個.①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過點C,∴直線CP的解析式為y=3x?3,∴點P坐標(1,0),②連接BD′,過點C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據(jù)對稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過點C,∴直線CP′解析式為,∴P′坐標為(9,0),綜上所述,滿足條件的點P坐標為(1,0)或(9,0).【點睛】本題考查了二次函數(shù)的綜合運用.關鍵是由已知條件求拋物線解析式,根據(jù)拋物線的對稱性,直線BC的特殊性求點的坐標,學會分類討論,不能漏解.20、(1),(2)AC⊥CD(3)∠BMC=41°【解析】分析:(1)由A點坐標可求得OA的長,再利用三角函數(shù)的定義可求得OC的長,可求得C、D點坐標,再利用待定系數(shù)法可求得直線AC的解析式;(2)由條件可證明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可證得AC⊥CD;(3)連接AD,可證得四邊形AEBD為平行四邊形,可得出△ACD為等腰直角三角形,則可求得答案.本題解析:(1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x軸,∴D(﹣2,3),∴m=﹣2×3=﹣6,∴y=﹣,設直線AC關系式為y=kx+b,∵過A(1,0),C(0,﹣2),∴,解得,∴y=x﹣2;(2)∵B(0,3),C(0,﹣2),∴BC=1=OA,在△OAC和△BCD中,∴△OAC≌△BCD(SAS),∴AC=CD,∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,∴AC⊥CD;(3)∠BMC=41°.如圖,連接AD,∵AE=OC,BD=OC,AE=BD,∴BD∥x軸,∴四邊形AEBD為平行四邊形,∴AD∥BM,∴∠BMC=∠DAC,∵△OAC≌△BCD,∴AC=CD,∵AC⊥CD,∴△ACD為等腰直角三角形,∴∠BMC=∠DAC=41°.21、(1);6;(2)有最小值;(3),.【解析】

(1)先求出點B,C坐標,利用待定系數(shù)法求出拋物線解析式,進而求出點A坐標,即可求出半圓的直徑,再構造直角三角形求出點D的坐標即可求出BD;

(2)先判斷出要求的最小值,只要CG最大即可,再求出直線EG解析式和拋物線解析式聯(lián)立成的方程只有一個交點,求出直線EG解析式,即可求出CG,結論得證.

(3)求出線段AC,BC進而判斷出滿足條件的一個點P和點B重合,再利用拋物線的對稱性求出另一個點P.【詳解】解:(1)對于直線y=x-3,令x=0,

∴y=-3,

∴B(0,-3),

令y=0,

∴x-3=0,

∴x=4,

∴C(4,0),

∵拋物線y=x2+bx+c過B,C兩點,∴∴∴拋物線的解析式為y=;令y=0,

∴=0,∴x=4或x=-1,

∴A(-1,0),

∴AC=5,

如圖2,記半圓的圓心為O',連接O'D,

∴O'A=O'D=O'C=AC=,

∴OO'=OC-O'C=4-=,

在Rt△O'OD中,OD==2,∴D(0,2),

∴BD=2-(-3)=5;(2)如圖3,

∵A(-1,0),C(4,0),

∴AC=5,

過點E作EG∥BC交x軸于G,

∵△ABF的AF邊上的高和△BEF的EF邊的高相等,設高為h,

∴S△ABF=AF?h,S△BEF=EF?h,∴==∵的最小值,∴最小,∵CF∥GE,∴∴最小,即:CG最大,∴EG和果圓的拋物線部分只有一個交點時,CG最大,

∵直線BC的解析式為y=x-3,

設直線EG的解析式為y=x+m①,

∵拋物線的解析式為y=x2-x-3②,

聯(lián)立①②化簡得,3x2-12x-12-4m=0,

∴△=144+4×3×(12+4m)=0,

∴m=-6,

∴直線EG的解析式為y=x-6,

令y=0,

∴x-6=0,

∴x=8,

∴CG=4,∴=;(3),.理由:如圖1,∵AC是半圓的直徑,

∴半圓上除點A,C外任意一點Q,都有∠AQC=90°,

∴點P只能在拋物線部分上,

∵B(0,-3),C(4,0),

∴BC=5,

∵AC=5,

∴AC=BC,

∴∠BAC=∠ABC,

當∠APC=∠CAB時,點P和點B重合,即:P(0,-3),

由拋物線的對稱性知,另一個點P的坐標為(3,-3),

即:使∠APC=∠CAB,點P坐標為(0,-3)或(3,-3).【點睛】本題是二次函數(shù)綜合題,考查待定系數(shù)法,圓的性質,勾股定理,相似三角形的判定和性質,拋物線的對稱性,等腰三角形的判定和性質,判斷出CG最大時,兩三角形面積之比最小是解本題的關鍵.22、(1)證明見解析;(2)證明見解析.【解析】

(1)由DE與AB垂直,BF與CD垂直,得到一對直角相等,再由ABCD為平行四邊形得到AD=BC,對角相等,利用AAS即可的值;(2)由平行四邊形的對邊平行得到DC與AB平行,得到∠CDE為直角,利用三個角為直角的四邊形為矩形即可的值.【詳解】解:(1)∵DE⊥AB,BF⊥CD,∴∠AED=∠CFB=90°,∵四邊形ABCD為平行四邊形,∴AD=BC,∠A=∠C,在△ADE和△CBF中,,∴△ADE≌△CBF(AAS);(2)∵四邊形ABCD為平行四邊形,∴CD∥AB,∴∠CDE+∠DEB=180°,∵∠DEB=90°,∴∠CDE=90°,∴∠CDE=∠DEB=∠BFD=90°,則四邊形BFDE為矩形.【點睛】本題考查1.矩形的判定;2.全等三角形的判定與性質;3.平行四邊形的性質.23、(1)詳見解析;(2)詳見解析;(3)2.【解析】(1)由BD是⊙O的切線得出∠DBA=90°,推出CH∥BD,證△AEC∽△AFD,得出比例式即可.(2)證△AEC∽△AFD,△AHE∽△ABF,推出BF=DF,根據(jù)直角三角形斜邊上中線性質得出CF=DF=BF即可.(3)求出EF=FC,求出∠G=∠FAG,推出AF=FG,求出AB=BG,連接OC,BC,求出∠FCB=∠CAB推出CG是⊙O切線,由切割線定理(或△AGC∽△CGB)得出(2+FG)2=BG×AG=2BG2,在Rt△BFG中,由勾股定理得出BG2=FG2﹣BF2,推出FG2﹣4FG﹣12=0,求出FG即可,從而由勾股定理求得AB=BG的長,從而得到⊙O的半徑r.24、(1)①;②;(2)【解析】

(1)①先根據(jù)等邊三角形的性質的,進而得出,最后用三角形的內角和定理即可得出結論;②先判斷出,得出,再判斷出是底角為30度的等腰三角形,再構造出直角三角形即可得出結論;(2)同②的方法即可得出結論.【詳解】(1)當時,①畫出的圖形如圖1所示,∵為等邊三角形,∴.∵為等邊三角形的中線∴是的垂直平分線,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論