版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
江蘇省鹽城市名校2024年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.函數(shù)中,x的取值范圍是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣22.如圖,正方形ABCD邊長為4,以BC為直徑的半圓O交對角線BD于點E,則陰影部分面積為()A.π B.π C.6﹣π D.2﹣π3.實數(shù)4的倒數(shù)是()A.4 B. C.﹣4 D.﹣4.如圖,小明同學(xué)用自制的直角三角形紙板DEF測量樹的高度AB,他調(diào)整自己的位置,設(shè)法使斜邊DF保持水平,并且邊DE與點B在同一直線上.已知紙板的兩條邊DF=50cm,EF=30cm,測得邊DF離地面的高度AC=1.5m,CD=20m,則樹高AB為()A.12m B.13.5m C.15m D.16.5m5.某市2010年元旦這天的最高氣溫是8℃,最低氣溫是﹣2℃,則這天的最高氣溫比最低氣溫高()A.10℃ B.﹣10℃ C.6℃ D.﹣6℃6.老師在微信群發(fā)了這樣一個圖:以線段AB為邊作正五邊形ABCDE和正三角形ABG,連接AC、DG,交點為F,下列四位同學(xué)的說法不正確的是()A.甲 B.乙 C.丙 D.丁7.若=1,則符合條件的m有()A.1個 B.2個 C.3個 D.4個8.下列實數(shù)中,為無理數(shù)的是()A. B. C.﹣5 D.0.31569.若a是一元二次方程x2﹣x﹣1=0的一個根,則求代數(shù)式a3﹣2a+1的值時需用到的數(shù)學(xué)方法是()A.待定系數(shù)法B.配方C.降次D.消元10.古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是()A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31二、填空題(本大題共6個小題,每小題3分,共18分)11.若xay與3x2yb是同類項,則ab的值為_____.12.如圖,在△ABC中,AB=2,BC=3.5,∠B=60°,將△ABC繞點A按順時針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點B的對應(yīng)點D恰好落在BC邊上時,則CD的長為_____.13.如圖,在扇形OAB中,∠O=60°,OA=4,四邊形OECF是扇形OAB中最大的菱形,其中點E,C,F(xiàn)分別在OA,,OB上,則圖中陰影部分的面積為__________.14.如圖,每個小正方形邊長為1,則△ABC邊AC上的高BD的長為_____.15.如圖,?ABCD中,對角線AC,BD相交于點O,且AC⊥BD,請你添加一個適當(dāng)?shù)臈l件________,使ABCD成為正方形.16.如圖(1),在矩形ABCD中,將矩形折疊,使點B落在邊AD上,這時折痕與邊AD和BC分別交于點E、點F.然后再展開鋪平,以B、E、F為頂點的△BEF稱為矩形ABCD的“折痕三角形”.如圖(2),在矩形ABCD中,AB=2,BC=4,當(dāng)“折痕△BEF”面積最大時,點E的坐標(biāo)為_________________________.三、解答題(共8題,共72分)17.(8分)為更精準(zhǔn)地關(guān)愛留守學(xué)生,某學(xué)校將留守學(xué)生的各種情形分成四種類型:A.由父母一方照看;B.由爺爺奶奶照看;C.由叔姨等近親照看;D.直接寄宿學(xué)校.某數(shù)學(xué)小組隨機(jī)調(diào)查了一個班級,發(fā)現(xiàn)該班留守學(xué)生數(shù)量占全班總?cè)藬?shù)的20%,并將調(diào)查結(jié)果制成如下兩幅不完整的統(tǒng)計圖.該班共有名留守學(xué)生,B類型留守學(xué)生所在扇形的圓心角的度數(shù)為;將條形統(tǒng)計圖補(bǔ)充完整;已知該校共有2400名學(xué)生,現(xiàn)學(xué)校打算對D類型的留守學(xué)生進(jìn)行手拉手關(guān)愛活動,請你估計該校將有多少名留守學(xué)生在此關(guān)愛活動中受益?18.(8分)如圖,點A是反比例函數(shù)y1=4x與一次函數(shù)y2=kx+b在x軸上方的圖象的交點,過點A作AC⊥x軸,垂足是點C,AC=OC.一次函數(shù)求點A的坐標(biāo);若梯形ABOC的面積是3,求一次函數(shù)y2=kx+b的解析式;結(jié)合這兩個函數(shù)的完整圖象:當(dāng)y1>19.(8分)如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù):).20.(8分)已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,DE⊥AC于E.(1)求證:DE為⊙O的切線;(2)G是ED上一點,連接BE交圓于F,連接AF并延長交ED于G.若GE=2,AF=3,求EF的長.21.(8分)如圖,點A、B、C、D在同一條直線上,CE∥DF,EC=BD,AC=FD,求證:AE=FB.22.(10分)如圖,已知與拋物線C1過A(-1,0)、B(3,0)、C(0,-3).(1)求拋物線C1的解析式.(2)設(shè)拋物線的對稱軸與x軸交于點P,D為第四象限內(nèi)的一點,若△CPD為等腰直角三角形,求出D點坐標(biāo).23.(12分)如圖,△ABC中,CD是邊AB上的高,且.求證:△ACD∽△CBD;求∠ACB的大?。?4.如圖,已知拋物線的對稱軸為直線,且拋物線與軸交于、兩點,與軸交于點,其中,.(1)若直線經(jīng)過、兩點,求直線和拋物線的解析式;(2)在拋物線的對稱軸上找一點,使點到點的距離與到點的距離之和最小,求出點的坐標(biāo);(3)設(shè)點為拋物線的對稱軸上的一個動點,求使為直角三角形的點的坐標(biāo).
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】要使有意義,所以x+1≥0且x+1≠0,
解得x>-1.
故選B.2、C【解析】
根據(jù)題意作出合適的輔助線,可知陰影部分的面積是△BCD的面積減去△BOE和扇形OEC的面積.【詳解】由題意可得,BC=CD=4,∠DCB=90°,連接OE,則OE=BC,∴OE∥DC,∴∠EOB=∠DCB=90°,∴陰影部分面積為:==6-π,故選C.【點睛】本題考查扇形面積的計算、正方形的性質(zhì),解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結(jié)合的思想解答.3、B【解析】
根據(jù)互為倒數(shù)的兩個數(shù)的乘積是1,求出實數(shù)4的倒數(shù)是多少即可.【詳解】解:實數(shù)4的倒數(shù)是:1÷4=.故選:B.【點睛】此題主要考查了一個數(shù)的倒數(shù)的求法,要熟練掌握,解答此題的關(guān)鍵是要明確:互為倒數(shù)的兩個數(shù)的乘積是1.4、D【解析】
利用直角三角形DEF和直角三角形BCD相似求得BC的長后加上小明同學(xué)的身高即可求得樹高AB.【詳解】∵∠DEF=∠BCD=90°,∠D=∠D,∴△DEF∽△DCB,∴,∵DF=50cm=0.5m,EF=30cm=0.3m,AC=1.5m,CD=20m,∴由勾股定理求得DE=40cm,∴,∴BC=15米,∴AB=AC+BC=1.5+15=16.5(米).故答案為16.5m.【點睛】本題考查了相似三角形的應(yīng)用,解題的關(guān)鍵是從實際問題中整理出相似三角形的模型.5、A【解析】
用最高氣溫減去最低氣溫,再根據(jù)有理數(shù)的減法運算法則“減去一個數(shù)等于加上這個數(shù)的相反數(shù)”即可求得答案.【詳解】8-(-2)=8+2=10℃.即這天的最高氣溫比最低氣溫高10℃.故選A.6、B【解析】
利用對稱性可知直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,再利用正五邊形、等邊三角形的性質(zhì)一一判斷即可;【詳解】∵五邊形ABCDE是正五邊形,△ABG是等邊三角形,∴直線DG是正五邊形ABCDE和正三角形ABG的對稱軸,∴DG垂直平分線段AB,∵∠BCD=∠BAE=∠EDC=108°,∴∠BCA=∠BAC=36°,∴∠DCA=72°,∴∠CDE+∠DCA=180°,∴DE∥AC,∴∠CDF=∠EDF=∠CFD=72°,∴△CDF是等腰三角形.故丁、甲、丙正確.故選B.【點睛】本題考查正多邊形的性質(zhì)、等邊三角形的性質(zhì)、軸對稱圖形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,屬于中考??碱}型.7、C【解析】
根據(jù)有理數(shù)的乘方及解一元二次方程-直接開平方法得出兩個有關(guān)m的等式,即可得出.【詳解】=1m2-9=0或m-2=1即m=3或m=3,m=1m有3個值故答案選C.【點睛】本題考查的知識點是有理數(shù)的乘方及解一元二次方程-直接開平方法,解題的關(guān)鍵是熟練的掌握有理數(shù)的乘方及解一元二次方程-直接開平方法.8、B【解析】
根據(jù)無理數(shù)的定義解答即可.【詳解】選項A、是分?jǐn)?shù),是有理數(shù);選項B、是無理數(shù);選項C、﹣5為有理數(shù);選項D、0.3156是有理數(shù);故選B.【點睛】本題考查了無理數(shù)的判定,熟知無理數(shù)是無限不循環(huán)小數(shù)是解決問題的關(guān)鍵.9、C【解析】
根據(jù)一元二次方程的解的定義即可求出答案.【詳解】由題意可知:a2-a-1=0,
∴a2-a=1,
或a2-1=a
∴a3-2a+1
=a3-a-a+1
=a(a2-1)-(a-1)
=a2-a+1
=1+1
=2
故選:C.【點睛】本題考查了一元二次方程的解,解題的關(guān)鍵是正確理解一元二次方程的解的定義.10、C【解析】
本題考查探究、歸納的數(shù)學(xué)思想方法.題中明確指出:任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.由于“正方形數(shù)”為兩個“三角形數(shù)”之和,正方形數(shù)可以用代數(shù)式表示為:(n+1)2,兩個三角形數(shù)分別表示為n(n+1)和(n+1)(n+2),所以由正方形數(shù)可以推得n的值,然后求得三角形數(shù)的值.【詳解】∵A中13不是“正方形數(shù)”;選項B、D中等式右側(cè)并不是兩個相鄰“三角形數(shù)”之和.故選:C.【點睛】此題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應(yīng)找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.二、填空題(本大題共6個小題,每小題3分,共18分)11、2【解析】試題解析:∵xay與3x2yb是同類項,∴a=2,b=1,則ab=2.12、1.1.【解析】分析:由將△ABC繞點A按順時針旋轉(zhuǎn)一定角度得到△ADE,當(dāng)點B的對應(yīng)點D恰好落在BC邊上,可得AD=AB,又由∠B=60°,可證得△ABD是等邊三角形,繼而可得BD=AB=2,則可求得答案.詳解:由旋轉(zhuǎn)的性質(zhì)可得:AD=AB,∵∠B=60°,∴△ABD是等邊三角形,∴BD=AB,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案為:1.1.點睛:此題考查了旋轉(zhuǎn)的性質(zhì)以及等邊三角形的判定與性質(zhì).此題比較簡單,注意掌握旋轉(zhuǎn)前后圖形的對應(yīng)關(guān)系,注意數(shù)形結(jié)合思想的應(yīng)用.13、8π﹣8【解析】
連接EF、OC交于點H,根據(jù)正切的概念求出FH,根據(jù)菱形的面積公式求出菱形FOEC的面積,根據(jù)扇形面積公式求出扇形OAB的面積,計算即可.【詳解】連接EF、OC交于點H,則OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面積=×4×4=8,扇形OAB的面積==8π,則陰影部分的面積為8π﹣8,故答案為8π﹣8.【點睛】本題考查了扇形面積的計算、菱形的性質(zhì),熟練掌握扇形的面積公式、菱形的性質(zhì)、靈活運用銳角三角函數(shù)的定義是解題的關(guān)鍵.14、【解析】試題分析:根據(jù)網(wǎng)格,利用勾股定理求出AC的長,AB的長,以及AB邊上的高,利用三角形面積公式求出三角形ABC面積,而三角形ABC面積可以由AC與BD乘積的一半來求,利用面積法即可求出BD的長:根據(jù)勾股定理得:,由網(wǎng)格得:S△ABC=×2×4=4,且S△ABC=AC?BD=×5BD,∴×5BD=4,解得:BD=.考點:1.網(wǎng)格型問題;2.勾股定理;3.三角形的面積.15、∠BAD=90°(不唯一)【解析】
根據(jù)正方形的判定定理添加條件即可.【詳解】解:∵平行四邊形ABCD的對角線AC與BD相交于點O,且AC⊥BD,∴四邊形ABCD是菱形,當(dāng)∠BAD=90°時,四邊形ABCD為正方形.故答案為:∠BAD=90°.【點睛】本題考查了正方形的判定:先判定平行四邊形是菱形,判定這個菱形有一個角為直角.16、(,2).【解析】
解:如圖,當(dāng)點B與點D重合時,△BEF面積最大,設(shè)BE=DE=x,則AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=,∴BE=ED=,AE=AD-ED=,∴點E坐標(biāo)(,2).故答案為:(,2).【點睛】本題考查翻折變換(折疊問題),利用數(shù)形結(jié)合思想解題是關(guān)鍵.三、解答題(共8題,共72分)17、(1)10,144;(2)詳見解析;(3)96【解析】
(1)依據(jù)C類型的人數(shù)以及百分比,即可得到該班留守的學(xué)生數(shù)量,依據(jù)B類型留守學(xué)生所占的百分比,即可得到其所在扇形的圓心角的度數(shù);(2)依據(jù)D類型留守學(xué)生的數(shù)量,即可將條形統(tǒng)計圖補(bǔ)充完整;(3)依據(jù)D類型的留守學(xué)生所占的百分比,即可估計該校將有多少名留守學(xué)生在此關(guān)愛活動中受益.【詳解】解:(1)2÷20%=10(人),×100%×360°=144°,故答案為10,144;(2)10﹣2﹣4﹣2=2(人),如圖所示:(3)2400××20%=96(人),答:估計該校將有96名留守學(xué)生在此關(guān)愛活動中受益.【點睛】本題考查的是條形統(tǒng)計圖和扇形統(tǒng)計圖的綜合運用.讀懂統(tǒng)計圖,從統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).18、(1)點A的坐標(biāo)為(2,2);(2)y=12x+1;(3)x<-4【解析】
(1)點A在反比例函數(shù)y1=4x上,AC⊥x軸,(2)梯形面積=12(OB+2)×2=3,求出B點坐標(biāo),將點A(3)結(jié)合圖象直接可求解;【詳解】解:(1)∵點A在y1=4x的圖像上,∴AC?OC=4,∴AC=OC=2∴點A的坐標(biāo)為(2,2);(2)∵梯形ABOC的面積是3,∴12解得OB=1,∴點B的坐標(biāo)為(0,1),把點A(2,2)與B(0,1)代入y得2=2k+b解得:k=12,∴一次函數(shù)y2=kx+b的解析式為(3)由題意可知,作出函數(shù)y1=4設(shè)函數(shù)y1=4∴聯(lián)立y1=4∴點E的坐標(biāo)為(-4,-1)∵y1>y2即∴可將圖像分割成如下圖所示:由圖像可知y1>y2所對應(yīng)的自變量的取值范圍為:【點睛】本題考查反比例函數(shù)和一次函數(shù)的圖形及性質(zhì);能夠熟練掌握待定系數(shù)法求函數(shù)的表達(dá)式,數(shù)形結(jié)合求x的取值范圍是解題的關(guān)鍵.19、5.7米.【解析】試題分析:由題意,過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進(jìn)而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.試題解析:解:如答圖,過點A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH?tan∠CAH=6tan30°=6×,∵DH=1.5,∴CD=+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=(米).答:拉線CE的長約為5.7米.考點:1.解直角三角形的應(yīng)用(仰角俯角問題);2.銳角三角函數(shù)定義;3.特殊角的三角函數(shù)值;4.矩形的判定和性質(zhì).20、(1)見解析;(2)∠EAF的度數(shù)為30°【解析】
(1)連接OD,如圖,先證明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根據(jù)切線的判定定理得到結(jié)論;(2)利用圓周角定理得到∠AFB=90°,再證明Rt△GEF∽△Rt△GAE,利用相似比得到于是可求出GF=1,然后在Rt△AEG中利用正弦定義求出∠EAF的度數(shù)即可.【詳解】(1)證明:連接OD,如圖,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE為⊙O的切線;(2)解:∵AB為直徑,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴,即整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG∴∠EAG=30°,即∠EAF的度數(shù)為30°.【點睛】本題考查了切線的性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經(jīng)過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常常“遇到切點連圓心得半徑”.也考查了圓周角定理.21、見解析【解析】
根據(jù)CE∥DF,可得∠ECA=∠FDB,再利用SAS證明△ACE≌△FDB,得出對應(yīng)邊相等即可.【詳解】解:∵CE∥DF
∴∠ECA=∠FDB,在△ECA和△FDB中∴△ECA≌△FDB,
∴AE=FB.【點睛】本題主要考查全等三角形的判定與性質(zhì)和平行線的性質(zhì);熟練掌握平行線的性質(zhì),證明三角形全等是解決問題的關(guān)鍵.22、(1)y=x2-2x-3,(2)D1(4,-1),D2(3,-4),D3(2,-2)【解析】
(1)設(shè)解析式為y=a(x-3)(x+1),把點C(0,-3)代入即可求出解析式;(2)根據(jù)題意作出圖形,根據(jù)等腰直角三角形的性質(zhì)即可寫出坐標(biāo).【詳解】(1)設(shè)解析式為y=a(x-3)(x+1),把點C(0,-3)代入得-3=a×(-3)×1解得a=1,∴解析式為y=x2-2x-3,(2)如圖所示,對稱軸為x=1,過D1作D1H⊥x軸,∵△CPD為等腰直角三角形,∴△OPC≌△HD1P,∴PH=OC=3,HD1=OP=1,∴D1(4,-1)過點D2F⊥y軸,同理△OPC≌△FCD2,∴FD2=3,CF=1,故D2(3,-4)由圖可知CD1與PD2交于D3,此時PD3⊥CD3,且PD3=CD3,PC=,∴PD3=CD3=故D3(2,-2)∴D1(4,-1),D2(3,-4),D3(2,-2)使△CPD為等腰直角三角形.【點睛】此題主要考察二次函數(shù)與等腰直角三角形結(jié)合的題,解題的關(guān)鍵是熟知二次函數(shù)的圖像與性質(zhì)及等腰直角三角形的性質(zhì).23、(1)證明見試題解析;(2)90°.【解析】試題分析:(1)由兩邊對應(yīng)成比例且夾角相等的兩個三角形相似,即可證明△ACD∽△CBD;(2)由(1)知△ACD∽△CBD,然后根據(jù)相似三角形的對應(yīng)角相等可得:∠A=∠BCD,然后由
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 公司勞務(wù)派遣協(xié)議書七篇
- 公司協(xié)議書大全
- 萬能施工安全協(xié)議書
- 面部發(fā)紅發(fā)熱病因介紹
- 進(jìn)行性球麻痹病因介紹
- 29化學(xué)中考真題匯編《溶液》及答案
- 中考政治第一部分知識闖關(guān)能力提升第5課時平等禮貌待人理解寬容他人復(fù)習(xí)課獲
- (范文)卷板機(jī)項目立項報告
- (2024)吸痰管項目可行性研究報告寫作范本(一)
- 2023年電子陶瓷材料項目融資計劃書
- 2024版國開電大??啤禘CEL在財務(wù)中的應(yīng)用》在線形考(形考作業(yè)一至四)試題及答案
- 自行車的品牌推廣與用戶體驗
- 英國文學(xué)史及選讀試題及答案
- 情感修復(fù)計劃書
- 電廠粉煤灰儲灰場施工組織設(shè)計樣本
- 2025屆高考語文復(fù)習(xí):詩歌形象鑒賞之事物形象
- 控制性低中心靜脈壓在腹腔鏡肝部分切除術(shù)的應(yīng)用
- 體檢科年終報告工作總結(jié)
- 焊接工藝優(yōu)化與提高焊接效率
- 視頻監(jiān)控系統(tǒng)維護(hù)方案
- 哈利波特與密室課件
評論
0/150
提交評論