版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省臨清市劉垓子鎮(zhèn)中學2024屆中考數(shù)學全真模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.化簡的結果是()A. B. C. D.2.在,,,這四個數(shù)中,比小的數(shù)有()個.A. B. C. D.3.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列結論正確的是()A.a<0 B.b2-4ac<0 C.當-1<x<3時,y>0 D.-=14.二次函數(shù)y=ax2+bx﹣2(a≠0)的圖象的頂點在第三象限,且過點(1,0),設t=a﹣b﹣2,則t值的變化范圍是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<05.實數(shù)a在數(shù)軸上對應點的位置如圖所示,把a,﹣a,a2按照從小到大的順序排列,正確的是()A.﹣a<a<a2 B.a<﹣a<a2 C.﹣a<a2<a D.a<a2<﹣a6.如圖,矩形紙片中,,,將沿折疊,使點落在點處,交于點,則的長等于()A. B. C. D.7.一輛客車從甲地開往乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),它們離甲地的路程y(km)與客車行駛時間x(h)間的函數(shù)關系如圖,下列信息:(1)出租車的速度為100千米/時;(2)客車的速度為60千米/時;(3)兩車相遇時,客車行駛了3.75小時;(4)相遇時,出租車離甲地的路程為225千米.其中正確的個數(shù)有()A.1個 B.2個 C.3個 D.4個8.下列事件中,必然事件是()A.拋擲一枚硬幣,正面朝上B.打開電視,正在播放廣告C.體育課上,小剛跑完1000米所用時間為1分鐘D.袋中只有4個球,且都是紅球,任意摸出一球是紅球9.下圖是由八個相同的小正方體組合而成的幾何體,其左視圖是()A. B. C. D.10.△ABC在網絡中的位置如圖所示,則cos∠ACB的值為()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.已知,如圖,正方形ABCD的邊長是8,M在DC上,且DM=2,N是AC邊上的一動點,則DN+MN的最小值是_____.12.如圖,在△ABC中,DM垂直平分AC,交BC于點D,連接AD,若∠C=28°,AB=BD,則∠B的度數(shù)為_____度.13.若函數(shù)y=m-2x14.如圖,在四邊形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=,則CD=_____.15.若關于x的一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是______.16.如果當a≠0,b≠0,且a≠b時,將直線y=ax+b和直線y=bx+a稱為一對“對偶直線”,把它們的公共點稱為該對“對偶直線”的“對偶點”,那么請寫出“對偶點”為(1,4)的一對“對偶直線”:______.三、解答題(共8題,共72分)17.(8分)如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動,△DEF運動,并滿足:點E在邊BC上沿B到C的方向運動,且DE始終經過點A,EF與AC交于M點.(1)求證:△ABE∽△ECM;(2)探究:在△DEF運動過程中,重疊部分能否構成等腰三角形?若能,求出BE的長;若不能,請說明理由;(3)當線段AM最短時,求重疊部分的面積.18.(8分)如圖,在⊙O中,AB是直徑,點C是圓上一點,點D是弧BC中點,過點D作⊙O切線DF,連接AC并延長交DF于點E.(1)求證:AE⊥EF;(2)若圓的半徑為5,BD=6求AE的長度.19.(8分)某商場一種商品的進價為每件30元,售價為每件40元.每天可以銷售48件,為盡快減少庫存,商場決定降價促銷.若該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,求兩次下降的百分率;經調查,若該商品每降價0.5元,每天可多銷售4件,那么每天要想獲得510元的利潤,每件應降價多少元?20.(8分)某汽車銷售公司6月份銷售某廠家的汽車,在一定范圍內,每部汽車的進價與銷售有如下關系,若當月僅售出1部汽車,則該部汽車的進價為27萬元,每多售一部,所有出售的汽車的進價均降低0.1萬元/部.月底廠家根據(jù)銷售量一次性返利給銷售公司,銷售量在10部以內,含10部,每部返利0.5萬元,銷售量在10部以上,每部返利1萬元.①若該公司當月賣出3部汽車,則每部汽車的進價為萬元;②如果汽車的銷售價位28萬元/部,該公司計劃當月盈利12萬元,那么要賣出多少部汽車?(盈利=銷售利潤+返利)21.(8分)某中學為了提高學生的消防意識,舉行了消防知識競賽,所有參賽學生分別設有一、二、三等獎和紀念獎,獲獎情況已繪制成如圖所示的兩幅不完整的統(tǒng)計圖,根據(jù)圖中所經信息解答下列問題:(1)這次知識競賽共有多少名學生?(2)“二等獎”對應的扇形圓心角度數(shù),并將條形統(tǒng)計圖補充完整;(3)小華參加了此次的知識競賽,請你幫他求出獲得“一等獎或二等獎”的概率.22.(10分)某化工材料經銷公司購進一種化工材料若干千克,價格為每千克40元,物價部門規(guī)定其銷售單價不高于每千克70元,不低于每千克40元.經市場調查發(fā)現(xiàn),日銷量y(千克)是銷售單價x(元)的一次函數(shù),且當x=70時,y=80;x=60時,y=1.在銷售過程中,每天還要支付其他費用350元.求y與x的函數(shù)關系式,并寫出自變量x的取值范圍;求該公司銷售該原料日獲利w(元)與銷售單價x(元)之間的函數(shù)關系式;當銷售單價為多少元時,該公司日獲利最大?最大利潤是多少元?23.(12分)為弘揚中華傳統(tǒng)文化,黔南州近期舉辦了中小學生“國學經典大賽”.比賽項目為:A.唐詩;B.宋詞;C.論語;D.三字經.比賽形式分“單人組”和“雙人組”.(1)小麗參加“單人組”,她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率是多少?(2)小紅和小明組成一個小組參加“雙人組”比賽,比賽規(guī)則是:同一小組的兩名隊員的比賽項目不能相同,且每人只能隨機抽取一次,則恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率是多少?請用畫樹狀圖或列表的方法進行說明.24.在△ABC中,AB=AC≠BC,點D和點A在直線BC的同側,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,連接AD,求∠ADB的度數(shù).(不必解答)小聰先從特殊問題開始研究,當α=90°,β=30°時,利用軸對稱知識,以AB為對稱軸構造△ABD的軸對稱圖形△ABD′,連接CD′(如圖1),然后利用α=90°,β=30°以及等邊三角形等相關知識便可解決這個問題.請結合小聰研究問題的過程和思路,在這種特殊情況下填空:△D′BC的形狀是三角形;∠ADB的度數(shù)為.在原問題中,當∠DBC<∠ABC(如圖1)時,請計算∠ADB的度數(shù);在原問題中,過點A作直線AE⊥BD,交直線BD于E,其他條件不變若BC=7,AD=1.請直接寫出線段BE的長為.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
將除法變?yōu)槌朔?,化簡二次根式,再用乘法分配律展開計算即可.【詳解】原式=×=×(+1)=2+.故選D.【點睛】本題主要考查二次根式的加減乘除混合運算,掌握二次根式的混合運算法則是解題關鍵.2、B【解析】
比較這些負數(shù)的絕對值,絕對值大的反而小.【詳解】在﹣4、﹣、﹣1、﹣這四個數(shù)中,比﹣2小的數(shù)是是﹣4和﹣.故選B.【點睛】本題主要考查負數(shù)大小的比較,解題的關鍵時負數(shù)比較大小時,絕對值大的數(shù)反而小.3、D【解析】試題分析:根據(jù)二次函數(shù)的圖象和性質進行判斷即可.解:∵拋物線開口向上,∴∴A選項錯誤,∵拋物線與x軸有兩個交點,∴∴B選項錯誤,由圖象可知,當-1<x<3時,y<0∴C選項錯誤,由拋物線的軸對稱性及與x軸的兩個交點分別為(-1,0)和(3,0)可知對稱軸為即-=1,∴D選項正確,故選D.4、D【解析】
由二次函數(shù)的解析式可知,當x=1時,所對應的函數(shù)值y=a+b-2,把點(1,0)代入y=ax2+bx-2,a+b-2=0,然后根據(jù)頂點在第三象限,可以判斷出a與b的符號,進而求出t=a-b-2的變化范圍.【詳解】解:∵二次函數(shù)y=ax2+bx-2的頂點在第三象限,且經過點(1,0)∴該函數(shù)是開口向上的,a>0
∵y=ax2+bx﹣2過點(1,0),∴a+b-2=0.∵a>0,∴2-b>0.∵頂點在第三象限,∴-<0.∴b>0.∴2-a>0.∴0<b<2.∴0<a<2.∴t=a-b-2.∴﹣4<t<0.【點睛】本題考查大小二次函數(shù)的圖像,熟練掌握圖像的性質是解題的關鍵.5、D【解析】
根據(jù)實數(shù)a在數(shù)軸上的位置,判斷a,﹣a,a2在數(shù)軸上的相對位置,根據(jù)數(shù)軸上右邊的數(shù)大于左邊的數(shù)進行判斷.【詳解】由數(shù)軸上的位置可得,a<0,-a>0,0<a2<a,所以,a<a2<﹣a.故選D【點睛】本題考核知識點:考查了有理數(shù)的大小比較,解答本題的關鍵是根據(jù)數(shù)軸判斷出a,﹣a,a2的位置.6、B【解析】
由折疊的性質得到AE=AB,∠E=∠B=90°,易證Rt△AEF≌Rt△CDF,即可得到結論EF=DF;易得FC=FA,設FA=x,則FC=x,F(xiàn)D=6-x,在Rt△CDF中利用勾股定理得到關于x的方程x2=42+(6-x)2,解方程求出x即可.【詳解】∵矩形ABCD沿對角線AC對折,使△ABC落在△ACE的位置,
∴AE=AB,∠E=∠B=90°,
又∵四邊形ABCD為矩形,
∴AB=CD,
∴AE=DC,
而∠AFE=∠DFC,
∵在△AEF與△CDF中,,∴△AEF≌△CDF(AAS),
∴EF=DF;
∵四邊形ABCD為矩形,
∴AD=BC=6,CD=AB=4,
∵Rt△AEF≌Rt△CDF,
∴FC=FA,
設FA=x,則FC=x,F(xiàn)D=6-x,
在Rt△CDF中,CF2=CD2+DF2,即x2=42+(6-x)2,解得x=,則FD=6-x=.故選B.【點睛】考查了折疊的性質:折疊前后兩圖形全等,即對應角相等,對應邊相等.也考查了矩形的性質和三角形全等的判定與性質以及勾股定理.7、D【解析】
根據(jù)題意和函數(shù)圖象中的數(shù)據(jù)可以判斷各個小題是否正確,從而可以解答本題.【詳解】由圖象可得,出租車的速度為:600÷6=100千米/時,故(1)正確,客車的速度為:600÷10=60千米/時,故(2)正確,兩車相遇時,客車行駛時間為:600÷(100+60)=3.75(小時),故(3)正確,相遇時,出租車離甲地的路程為:60×3.75=225千米,故(4)正確,故選D.【點睛】本題考查一次函數(shù)的應用,解答本題的關鍵是明確題意,利用數(shù)形結合的思想解答.8、D【解析】試題解析:A.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;B.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;C.是可能發(fā)生也可能不發(fā)生的事件,屬于不確定事件,不符合題意;D.袋中只有4個球,且都是紅球,任意摸出一球是紅球,是必然事件,符合題意.故選D.點睛:事件分為確定事件和不確定事件.必然事件和不可能事件叫做確定事件.9、B【解析】
解:找到從左面看所得到的圖形,從左面可看到從左往右三列小正方形的個數(shù)為:2,3,1.故選B.10、B【解析】作AD⊥BC的延長線于點D,如圖所示:在Rt△ADC中,BD=AD,則AB=BD.cos∠ACB=,故選B.二、填空題(本大題共6個小題,每小題3分,共18分)11、1【解析】分析:要求DN+MN的最小值,DN,MN不能直接求,可考慮通過作輔助線轉化DN,MN的值,從而找出其最小值求解.解答:解:如圖,連接BM,∵點B和點D關于直線AC對稱,∴NB=ND,則BM就是DN+MN的最小值,∵正方形ABCD的邊長是8,DM=2,∴CM=6,∴BM==1,∴DN+MN的最小值是1.故答案為1.點評:考查正方形的性質和軸對稱及勾股定理等知識的綜合應用.12、1【解析】
根據(jù)線段垂直平分線上的點到兩端點的距離相等可得AD=CD,等邊對等角可得∠DAC=∠C,三角形的一個外角等于與它不相鄰的兩個內角的和求出∠ADB=∠C+∠DAC,再次根據(jù)等邊對等角可得可得∠ADB=∠BAD,然后利用三角形的內角和等于180°列式計算即可得解.【詳解】∵DM垂直平分AC,∴AD=CD,∴∠DAC=∠C=28°,∴∠ADB=∠C+∠DAC=28°+28°=56°,∵AB=BD,∴∠ADB=∠BAD=56°,在△ABD中,∠B=180°?∠BAD?∠ADB=180°?56°?56°=1°.故答案為1.【點睛】本題考查了等腰三角形的性質,線段垂直平分線上的點到兩端點的距離相等的性質,三角形的一個外角等于與它不相鄰的兩個內角的和的性質,三角形的內角和定理,熟記各性質與定理是解題的關鍵.13、m>2【解析】試題分析:有函數(shù)y=m考點:反比例函數(shù)的性質.14、【解析】
延長AD和BC交于點E,在直角△ABE中利用三角函數(shù)求得BE的長,則EC的長即可求得,然后在直角△CDE中利用三角函數(shù)的定義求解.【詳解】如圖,延長AD、BC相交于點E,∵∠B=90°,∴,∴BE=,∴CE=BE-BC=2,AE=,∴,又∵∠CDE=∠CDA=90°,∴在Rt△CDE中,,∴CD=.15、k<5且k≠1.【解析】試題解析:∵關于x的一元二次方程有兩個不相等的實數(shù)根,解得:且故答案為且16、【解析】
把(1,4)代入兩函數(shù)表達式可得:a+b=4,再根據(jù)“對偶直線”的定義,即可確定a、b的值.【詳解】把(1,4)代入得:a+b=4又因為,,且,所以當a=1是b=3所以“對偶點”為(1,4)的一對“對偶直線”可以是:故答案為【點睛】此題為新定義題型,關鍵是理解新定義,并按照新定義的要求解答.三、解答題(共8題,共72分)17、(1)證明見解析;(2)能;BE=1或;(3)【解析】
(1)證明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;當AE=EM時,則△ABE≌△ECM,∴CE=AB=5,∴BE=BC?EC=6?5=1,當AM=EM時,則∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6?=;∴BE=1或;(3)解:設BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=,∴AM=5?CM,∴當x=3時,AM最短為,又∵當BE=x=3=BC時,∴點E為BC的中點,∴AE⊥BC,∴AE=,此時,EF⊥AC,∴EM=,S△AEM=.18、(1)詳見解析;(2)AE=6.1.【解析】
(1)連接OD,利用切線的性質和三角形的內角和證明OD∥EA,即可證得結論;(2)利用相似三角形的判定和性質解答即可.【詳解】(1)連接OD,∵EF是⊙O的切線,∴OD⊥EF,∵OD=OA,∴∠ODA=∠OAD,∵點D是弧BC中點,∴∠EAD=∠OAD,∴∠EAD=∠ODA,∴OD∥EA,∴AE⊥EF;(2)∵AB是直徑,∴∠ADB=90°,∵圓的半徑為5,BD=6∴AB=10,BD=6,在Rt△ADB中,,∵∠EAD=∠DAB,∠AED=∠ADB=90°,∴△AED∽△ADB,∴,即,解得:AE=6.1.【點睛】本題考查了切線的性質,相似三角形的判定和性質,勾股定理的應用以及圓周角定理,關鍵是利用切線的性質和相似三角形判定和性質進行解答.19、(1)兩次下降的百分率為10%;(2)要使每月銷售這種商品的利潤達到110元,且更有利于減少庫存,則商品應降價2.1元.【解析】
(1)設每次降價的百分率為x,(1﹣x)2為兩次降價后的百分率,40元降至32.4元就是方程的等量條件,列出方程求解即可;(2)設每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應降價y元,由銷售問題的數(shù)量關系建立方程求出其解即可【詳解】解:(1)設每次降價的百分率為x.40×(1﹣x)2=32.4x=10%或190%(190%不符合題意,舍去)答:該商品連續(xù)兩次下調相同的百分率后售價降至每件32.4元,兩次下降的百分率為10%;(2)設每天要想獲得110元的利潤,且更有利于減少庫存,則每件商品應降價y元,由題意,得解得:=1.1,=2.1,∵有利于減少庫存,∴y=2.1.答:要使商場每月銷售這種商品的利潤達到110元,且更有利于減少庫存,則每件商品應降價2.1元.【點睛】此題主要考查了一元二次方程的應用,關鍵是根據(jù)題意找到等式兩邊的平衡條件,這種價格問題主要解決價格變化前后的平衡關系,列出方程,解答即可.20、解:(1)22.1.(2)設需要售出x部汽車,由題意可知,每部汽車的銷售利潤為:21-[27-0.1(x-1)]=(0.1x+0.9)(萬元),當0≤x≤10,根據(jù)題意,得x·(0.1x+0.9)+0.3x=12,整理,得x2+14x-120=0,解這個方程,得x1=-20(不合題意,舍去),x2=2.當x>10時,根據(jù)題意,得x·(0.1x+0.9)+x=12,整理,得x2+19x-120=0,解這個方程,得x1=-24(不合題意,舍去),x2=3.∵3<10,∴x2=3舍去.答:要賣出2部汽車.【解析】一元二次方程的應用.(1)根據(jù)若當月僅售出1部汽車,則該部汽車的進價為27萬元,每多售出1部,所有售出的汽車的進價均降低0.1萬元/部,得出該公司當月售出3部汽車時,則每部汽車的進價為:27-0.1×2=22.1.,(2)利用設需要售出x部汽車,由題意可知,每部汽車的銷售利潤,根據(jù)當0≤x≤10,以及當x>10時,分別討論得出即可.21、(1)200;(2)72°,作圖見解析;(3).【解析】
(1)用一等獎的人數(shù)除以所占的百分比求出總人數(shù);(2)用總人數(shù)乘以二等獎的人數(shù)所占的百分比求出二等獎的人數(shù),補全統(tǒng)計圖,再用360°乘以二等獎的人數(shù)所占的百分比即可求出“二等獎”對應的扇形圓心角度數(shù);(3)用獲得一等獎和二等獎的人數(shù)除以總人數(shù)即可得出答案.【詳解】解:(1)這次知識競賽共有學生=200(名);(2)二等獎的人數(shù)是:200×(1﹣10%﹣24%﹣46%)=40(人),補圖如下:“二等獎”對應的扇形圓心角度數(shù)是:360°×=72°;(3)小華獲得“一等獎或二等獎”的概率是:=.【點睛】本題主要考查了條形統(tǒng)計圖以及扇形統(tǒng)計圖,利用統(tǒng)計圖獲取信息是解本題的關鍵.22、(1)y=﹣2x+220(40≤x≤70);(2)w=﹣2x2+300x﹣9150;(3)當銷售單價為70元時,該公司日獲利最大,為2050元.【解析】
(1)根據(jù)y與x成一次函數(shù)解析式,設為y=kx+b(k≠0),把x與y的兩對值代入求出k與b的值,即可確定出y與x的解析式,并求出x的范圍即可;(2)根據(jù)利潤=單價×銷售量,列出w關于x的二次函數(shù)解析式即可;(3)利用二次函數(shù)的性質求出w的最大值,以及此時x的值即可.【詳解】(1)設y=kx+b(k≠0),根據(jù)題意得,解得:k=﹣2,b=220,∴y=﹣2x+220(40≤x≤70);(2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;(3)w=﹣2(x﹣75)2+21,∵40≤x≤70,∴x=70時,w有最大值為w=﹣2×25+21=2050元,∴當銷售單價為70元時,該公司日獲利最大,為2050元.【點睛】此題考查了二次函數(shù)的應用,待定系數(shù)法求一次函數(shù)解析式,以及二次函數(shù)的性質,熟練掌握二次函數(shù)性質是解本題的關鍵.23、(1);(2).【解析】
(1)直接利用概率公式求解;(2)先畫樹狀圖展示所有12種等可能的結果數(shù),再找出恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數(shù),然后根據(jù)概率公式求解.【詳解】(1)她從中隨機抽取一個比賽項目,恰好抽中“三字經”的概率=;(2)畫樹狀圖為:共有12種等可能的結果數(shù),其中恰好小紅抽中“唐詩”且小明抽中“宋詞”的結果數(shù)為1,所以恰好小紅抽中“唐詩”且小明抽中“宋詞”的概率=.24、(1)①△D′BC是等邊三角形,②∠ADB=30°(1)∠ADB=30°;(3)7+或7﹣【解析】
(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等邊三角形;②借助①的結論,再判斷出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解決問題.(1)當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1).(3)第①種情況:當60°<α≤110°時,如圖3中,作∠AB
D′=∠ABD,B
D′=BD,連接CD′,AD′,證明方法類似(1),最后利用含30度角的直角三角形求出DE,即可得出結論;第②種情況:當0°<α<60°時,如圖4中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′.證明方法類似(1),最后利用含30度角的直角三角形的性質即可得出結論.【詳解】(1)①如圖1中,作∠ABD′=∠ABD,BD′=BD,連接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2031年中國磁性筆頭行業(yè)投資前景及策略咨詢研究報告
- 2025年度耐候砂石購銷合同協(xié)議書(特制版)3篇
- 個人教育培訓機構轉讓合同(2024版)2篇
- 2025-2030年中國高純石英砂行業(yè)運營狀況及發(fā)展前景預測分析報告
- 2025-2030年中國香蘭素行業(yè)市場前景規(guī)模及發(fā)展趨勢分析報告
- 二零二五版房屋買賣合同范本(爭議解決與仲裁)3篇
- 五金批發(fā)商轉型升級路徑與實踐考核試卷
- 塑料片材生產線的智能維護系統(tǒng)設計方法考核試卷
- 實驗室設備租賃考核試卷
- 預防艾滋病、梅毒和乙肝母嬰傳播轉介服務制度
- 集裝箱貨運碼頭的火災防范措施
- 《高速鐵路客運安全與應急處理》課程標準
- 23J916-1:住宅排氣道(一)
- 七年級數(shù)學上冊專題1.14數(shù)軸與絕對值綜合問題大題專練(重難點培優(yōu))-【講練課堂】2022-2023學年七年級數(shù)學上冊尖子生同步培優(yōu)題典(原卷版)【人教版】
- 社會保險職工增減表
- 小學語文低年級寫話 鴿子
- 仁愛英語八年級上冊詞匯練習題全冊
- 通用BIQS培訓資料課件
- 報價單模板及范文(通用十二篇)
- 鈑金部品質控制計劃
評論
0/150
提交評論