人教A版高中數(shù)學(xué)(選擇性必修三)同步講義第04講 6.3.1二項(xiàng)式定理+6.3.2二項(xiàng)式系數(shù)的性質(zhì)(教師版)_第1頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修三)同步講義第04講 6.3.1二項(xiàng)式定理+6.3.2二項(xiàng)式系數(shù)的性質(zhì)(教師版)_第2頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修三)同步講義第04講 6.3.1二項(xiàng)式定理+6.3.2二項(xiàng)式系數(shù)的性質(zhì)(教師版)_第3頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修三)同步講義第04講 6.3.1二項(xiàng)式定理+6.3.2二項(xiàng)式系數(shù)的性質(zhì)(教師版)_第4頁(yè)
人教A版高中數(shù)學(xué)(選擇性必修三)同步講義第04講 6.3.1二項(xiàng)式定理+6.3.2二項(xiàng)式系數(shù)的性質(zhì)(教師版)_第5頁(yè)
已閱讀5頁(yè),還剩27頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

第04講6.3.1二項(xiàng)式定理+6.3.2二項(xiàng)式系數(shù)的性質(zhì)課程標(biāo)準(zhǔn)學(xué)習(xí)目標(biāo)①理解二項(xiàng)式定理的概念,會(huì)用二項(xiàng)式定理求解二項(xiàng)展開式。②掌握二項(xiàng)式系數(shù)的規(guī)律和指數(shù)的變化規(guī)律。③掌握多項(xiàng)式展開式的通項(xiàng)及特殊項(xiàng)或系數(shù)。④理解二項(xiàng)式系數(shù)的性質(zhì)。⑤會(huì)用賦值法求展開式系數(shù)的和。1.要求能運(yùn)用二項(xiàng)式定理求解二項(xiàng)展開式;2.會(huì)求展開式中的二項(xiàng)式系數(shù),特殊項(xiàng)及特殊項(xiàng)系數(shù);3.能用待定法求展開式中的待定系數(shù).能解決與二項(xiàng)式定理相關(guān)的綜合問題;4.能理解二項(xiàng)式系數(shù)的性質(zhì);5.掌握二項(xiàng)式系數(shù)的增減性,靈活應(yīng)用賦值法求二項(xiàng)展開式各項(xiàng)系數(shù)和.知識(shí)點(diǎn)01:知識(shí)鏈接(1)SKIPIF1<0(2)SKIPIF1<0知識(shí)點(diǎn)02:二項(xiàng)式定理及相關(guān)概念(1)二項(xiàng)式定理一般地,對(duì)于每個(gè)SKIPIF1<0(SKIPIF1<0),SKIPIF1<0的展開式中SKIPIF1<0共有SKIPIF1<0個(gè),將它們合并同類項(xiàng),就可以得到二項(xiàng)展開式:SKIPIF1<0(SKIPIF1<0).這個(gè)公式叫做二項(xiàng)式定理.(2)二項(xiàng)展開式公式中:SKIPIF1<0,SKIPIF1<0等號(hào)右邊的多項(xiàng)式叫做SKIPIF1<0的二項(xiàng)展開式.【即學(xué)即練1】(2023上·高二課時(shí)練習(xí))用二項(xiàng)式定理展開下列各式:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)答案見解析(2)答案見解析【詳解】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0.(2)SKIPIF1<0SKIPIF1<0SKIPIF1<0.(3)二項(xiàng)式系數(shù)與項(xiàng)的系數(shù)二項(xiàng)展開式中各項(xiàng)的二項(xiàng)式系數(shù)為SKIPIF1<0(SKIPIF1<0),項(xiàng)的系數(shù)是指該項(xiàng)中除變量外的常數(shù)部分,包含符號(hào)等.【即學(xué)即練2】(2023上·遼寧朝陽(yáng)·高三建平縣實(shí)驗(yàn)中學(xué)校聯(lián)考階段練習(xí))在二項(xiàng)式SKIPIF1<0的展開式中,二項(xiàng)式系數(shù)最大的是(

)A.第3項(xiàng) B.第4項(xiàng)C.第5項(xiàng) D.第3項(xiàng)和第4項(xiàng)【答案】B【詳解】二項(xiàng)式SKIPIF1<0的展開式共有7項(xiàng),則二項(xiàng)式系數(shù)最大的是第4項(xiàng).故選:B.【即學(xué)即練3】(2023上·天津?yàn)I海新·高三塘沽二中??茧A段練習(xí))若SKIPIF1<0的二項(xiàng)展開式中所有二項(xiàng)系數(shù)的和等于SKIPIF1<0,則在的展開式中,SKIPIF1<0的系數(shù)是.【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0的二項(xiàng)展開式中所有二項(xiàng)系數(shù)的和等于SKIPIF1<0,所以SKIPIF1<0,則SKIPIF1<0,則SKIPIF1<0展開式的通項(xiàng)為SKIPIF1<0(其中SKIPIF1<0且SKIPIF1<0),令SKIPIF1<0,解得SKIPIF1<0,所以展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0.(4)二項(xiàng)式定理的三種常見變形①SKIPIF1<0②SKIPIF1<0③SKIPIF1<0知識(shí)點(diǎn)03:二項(xiàng)展開式的通項(xiàng)二項(xiàng)展開式中的SKIPIF1<0(SKIPIF1<0)叫做二項(xiàng)展開式的通項(xiàng),用SKIPIF1<0表示,即通項(xiàng)為展開式的第SKIPIF1<0項(xiàng):SKIPIF1<0.通項(xiàng)體現(xiàn)了二項(xiàng)展開式的項(xiàng)數(shù)、系數(shù)、次數(shù)的變化規(guī)律,是二項(xiàng)式定理的核心,它在求展開式的某些特定項(xiàng)(如含指定冪的項(xiàng)常數(shù)項(xiàng)、中間項(xiàng)、有理項(xiàng)、系數(shù)最大的項(xiàng)等)及其系數(shù)等方面有著廣泛的應(yīng)用.知識(shí)點(diǎn)04:二項(xiàng)式系數(shù)的性質(zhì)①對(duì)稱性:二項(xiàng)展開式中與首尾兩端距離相等的兩個(gè)二項(xiàng)式系數(shù)相等:SKIPIF1<0②增減性:當(dāng)SKIPIF1<0時(shí),二項(xiàng)式系數(shù)遞增,當(dāng)SKIPIF1<0時(shí),二項(xiàng)式系數(shù)遞減;③最大值:當(dāng)SKIPIF1<0為奇數(shù)時(shí),最中間兩項(xiàng)二項(xiàng)式系數(shù)最大;當(dāng)SKIPIF1<0為偶數(shù)時(shí),最中間一項(xiàng)的二項(xiàng)式系數(shù)最大.④各二項(xiàng)式系數(shù)和:SKIPIF1<0;奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)和與偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)和相等:SKIPIF1<0【即學(xué)即練4】(2023·全國(guó)·高三專題練習(xí))已知SKIPIF1<0,SKIPIF1<0,若SKIPIF1<0,則該展開式各項(xiàng)的二項(xiàng)式系數(shù)和為(

)A.81 B.64 C.27 D.32【答案】D【詳解】SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,解得SKIPIF1<0,∴該展開式各項(xiàng)的二項(xiàng)式系數(shù)和為SKIPIF1<0.故選:D【即學(xué)即練5】(2023上·遼寧沈陽(yáng)·高二??茧A段練習(xí))若SKIPIF1<0展開式的二項(xiàng)式系數(shù)之和為64,則展開式的常數(shù)項(xiàng)為.【答案】15【詳解】因?yàn)镾KIPIF1<0展開式的二項(xiàng)式系數(shù)之和為64,所以SKIPIF1<0,所以SKIPIF1<0,所以二項(xiàng)式為SKIPIF1<0,所以第SKIPIF1<0項(xiàng)展開式為SKIPIF1<0,若求常數(shù)項(xiàng),則令SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0,即常數(shù)項(xiàng)為15.故答案為:15.題型01求SKIPIF1<0型的展開式【典例1】(2023下·北京通州·高二統(tǒng)考期中)二項(xiàng)式SKIPIF1<0的展開式為(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】二項(xiàng)式SKIPIF1<0SKIPIF1<0,SKIPIF1<0.故選:B【典例2】(2023上·高二課時(shí)練習(xí))求SKIPIF1<0的二項(xiàng)展開式.【答案】SKIPIF1<0【詳解】由二項(xiàng)式定理,得SKIPIF1<0SKIPIF1<0,所以SKIPIF1<0的二項(xiàng)展開式是SKIPIF1<0.【典例3】(2023·全國(guó)·高二專題練習(xí))利用二項(xiàng)式定理展開下列各式:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)答案見解析(2)答案見解析【詳解】(1)解:由SKIPIF1<0.(2)解:由SKIPIF1<0SKIPIF1<0.【變式1】(2023·全國(guó)·高二課堂例題)寫出SKIPIF1<0的展開式.【答案】SKIPIF1<0【詳解】在二項(xiàng)式定理中令SKIPIF1<0,可得SKIPIF1<0SKIPIF1<0.【變式2】(2023·全國(guó)·高二專題練習(xí))求SKIPIF1<0的展開式.【答案】SKIPIF1<0【詳解】SKIPIF1<0SKIPIF1<0題型02二項(xiàng)展開式的逆用【典例1】(2023下·黑龍江七臺(tái)河·高二勃利縣高級(jí)中學(xué)??计谥校㏒KIPIF1<0(

).A.1 B.-1C.(-1)n D.3n【答案】C【詳解】原式=SKIPIF1<0.故選:C.【典例2】(2023下·上海浦東新·高二??计谥校㏒KIPIF1<0.【答案】SKIPIF1<0【詳解】原式SKIPIF1<0.故答案為:SKIPIF1<0.【典例3】(2023上·高二課時(shí)練習(xí))化簡(jiǎn)SKIPIF1<0.【答案】SKIPIF1<0.【詳解】原式SKIPIF1<0SKIPIF1<0【變式1】(2023上·高二課時(shí)練習(xí))化簡(jiǎn):設(shè)SKIPIF1<0,則SKIPIF1<0.【答案】1【詳解】因?yàn)镾KIPIF1<0SKIPIF1<0故答案為:SKIPIF1<0【變式2】(2023下·安徽合肥·高二統(tǒng)考期末)已知SKIPIF1<0,則SKIPIF1<0的值為.【答案】SKIPIF1<0【詳解】由SKIPIF1<0,可得SKIPIF1<0則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.【變式3】(2023·遼寧大連·育明高中??家荒#㏒KIPIF1<0的值是.【答案】SKIPIF1<0【詳解】由已知可得,SKIPIF1<0SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0.題型03二項(xiàng)展開式中的特定項(xiàng)或特定系數(shù)問題【典例1】(2023·四川南充·統(tǒng)考一模)二項(xiàng)式SKIPIF1<0的展開式中常數(shù)項(xiàng)為(

)A.SKIPIF1<0 B.60 C.210 D.SKIPIF1<0【答案】B【詳解】展開式的通項(xiàng)為SKIPIF1<0,所以SKIPIF1<0,常數(shù)項(xiàng)為SKIPIF1<0,故選:B.【典例2】(2023下·山東濟(jì)寧·高二統(tǒng)考期中)SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)是(

)A.126 B.125 C.96 D.83【答案】B【詳解】由題意原式中SKIPIF1<0的系數(shù)SKIPIF1<0;故選:B.【典例3】(2023·西藏拉薩·統(tǒng)考一模)二項(xiàng)式SKIPIF1<0的展開式中的第3項(xiàng)為(

)A.160 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故C項(xiàng)正確.故選:C.【典例4】(2023上·高二課時(shí)練習(xí))SKIPIF1<0的展開式的第3項(xiàng)的系數(shù)為;常數(shù)項(xiàng)為.【答案】SKIPIF1<0SKIPIF1<0【詳解】由二項(xiàng)式SKIPIF1<0展開式的通項(xiàng)為SKIPIF1<0,可得展開式中第3項(xiàng)為SKIPIF1<0,所以第3項(xiàng)的系數(shù)為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,所以展開式的常數(shù)項(xiàng)為SKIPIF1<0.故答案為:SKIPIF1<0;SKIPIF1<0.【變式1】(2023上·北京東城·高三景山學(xué)校校考階段練習(xí))二項(xiàng)式SKIPIF1<0的展開式中常數(shù)項(xiàng)為.(用數(shù)字作答)【答案】60【詳解】二項(xiàng)式SKIPIF1<0的展開式的通項(xiàng)公式SKIPIF1<0,由SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,所以二項(xiàng)式SKIPIF1<0的展開式中常數(shù)項(xiàng)為60.故答案為:60【變式2】(2023·山西臨汾·??寄M預(yù)測(cè))SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)的系數(shù)是.(用數(shù)字作答)【答案】SKIPIF1<0【詳解】因?yàn)镾KIPIF1<0的展開通項(xiàng)公式為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以其中含SKIPIF1<0的項(xiàng)的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0.【變式3】(2023下·四川遂寧·高三射洪中學(xué)??茧A段練習(xí))二項(xiàng)式SKIPIF1<0展開式中的含SKIPIF1<0項(xiàng)的系數(shù)為.【答案】-40【詳解】二項(xiàng)式SKIPIF1<0展開式的通項(xiàng)為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.故答案為:SKIPIF1<0.【變式4】(2023下·江蘇鎮(zhèn)江·高二統(tǒng)考期中)在SKIPIF1<0展開式中,SKIPIF1<0項(xiàng)的系數(shù)為.【答案】SKIPIF1<0【詳解】由題意,多項(xiàng)式SKIPIF1<0,根據(jù)組合數(shù)的運(yùn)算,展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0,又由SKIPIF1<0.故答案為:SKIPIF1<0.題型04三項(xiàng)展開式中的特定項(xiàng)或特定系數(shù)問題【典例1】(2023下·河北邢臺(tái)·高二統(tǒng)考期末)SKIPIF1<0展開式中的常數(shù)項(xiàng)為(

)A.6 B.15 C.20 D.28【答案】C【詳解】因?yàn)镾KIPIF1<0,所以展開式中的常數(shù)項(xiàng)即分子SKIPIF1<0展開式中SKIPIF1<0的系數(shù),即SKIPIF1<0.故選:C【典例2】(2023·廣東廣州·統(tǒng)考模擬預(yù)測(cè))SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為(用數(shù)字作答).【答案】SKIPIF1<0【詳解】由于SKIPIF1<0,所以SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)為SKIPIF1<0,所以SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0【典例3】(2023上·山東·高三沂源縣第一中學(xué)校聯(lián)考開學(xué)考試)SKIPIF1<0展開式中含SKIPIF1<0項(xiàng)的系數(shù)為.【答案】-160【詳解】SKIPIF1<0變形為SKIPIF1<0,故通項(xiàng)公式得SKIPIF1<0,其中SKIPIF1<0的通項(xiàng)公式為SKIPIF1<0,故通項(xiàng)公式為SKIPIF1<0,其中SKIPIF1<0,SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,故SKIPIF1<0.故答案為:-160【變式1】(2023·廣東·東莞市東華高級(jí)中學(xué)校聯(lián)考一模)在SKIPIF1<0的展開式中,記SKIPIF1<0項(xiàng)的系數(shù)為SKIPIF1<0,若SKIPIF1<0,則SKIPIF1<0的值為.【答案】SKIPIF1<0【詳解】因?yàn)樵赟KIPIF1<0的展開式中,記SKIPIF1<0項(xiàng)的系數(shù)為SKIPIF1<0,所以SKIPIF1<0項(xiàng)的系數(shù)SKIPIF1<0,即SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0,即SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0.【變式2】(2023上·安徽·高三安徽省馬鞍山市第二十二中學(xué)校聯(lián)考階段練習(xí))SKIPIF1<0展開式中,SKIPIF1<0項(xiàng)的系數(shù)為.【答案】SKIPIF1<0【詳解】SKIPIF1<0,∵SKIPIF1<0的指數(shù)是3,∴得到SKIPIF1<0,∵SKIPIF1<0的指數(shù)是2,得到SKIPIF1<0,∴SKIPIF1<0項(xiàng)的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0【變式3】(2023下·重慶沙坪壩·高三重慶南開中學(xué)??茧A段練習(xí))SKIPIF1<0的展開式中SKIPIF1<0項(xiàng)的系數(shù)為.【答案】SKIPIF1<0【詳解】SKIPIF1<0的展開式中,構(gòu)成SKIPIF1<0項(xiàng)只能是一個(gè)SKIPIF1<0、一個(gè)SKIPIF1<0、3個(gè)SKIPIF1<0相乘,故此項(xiàng)為SKIPIF1<0.故答案為:SKIPIF1<0.題型05幾個(gè)二項(xiàng)式的和或積的展開式中的特定項(xiàng)或特定系數(shù)問題【典例1】(2023上·江西宜春·高二??茧A段練習(xí))SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為(

)A.SKIPIF1<0 B.7 C.77 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0的展開式通項(xiàng)為SKIPIF1<0,故SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0,故選:B.【典例2】(2023·安徽·校聯(lián)考模擬預(yù)測(cè))二項(xiàng)式SKIPIF1<0的展開式中,所有項(xiàng)系數(shù)和為SKIPIF1<0,則SKIPIF1<0的系數(shù)為(用數(shù)字作答).【答案】SKIPIF1<0【詳解】令SKIPIF1<0可得二項(xiàng)式SKIPIF1<0的所有項(xiàng)系數(shù)和為SKIPIF1<0,所以SKIPIF1<0.二項(xiàng)式SKIPIF1<0的展開式的通項(xiàng)公式為SKIPIF1<0,SKIPIF1<0,1,…,8,所以SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)為SKIPIF1<0SKIPIF1<0.故答案為:SKIPIF1<0【典例3】(2023上·全國(guó)·高三專題練習(xí))SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)的系數(shù)為.【答案】960【詳解】SKIPIF1<0的展開式的通項(xiàng)為SKIPIF1<0,故令SKIPIF1<0,可得SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)的系數(shù)為:SKIPIF1<0.故答案為:960.【典例4】(2023·天津·高三專題練習(xí))若SKIPIF1<0的展開式中所有項(xiàng)的系數(shù)和為SKIPIF1<0,則展開式中SKIPIF1<0的系數(shù)為.【答案】SKIPIF1<0【詳解】令SKIPIF1<0,得SKIPIF1<0,解得SKIPIF1<0,進(jìn)而可得SKIPIF1<0的展開式為SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,故SKIPIF1<0的系數(shù)為SKIPIF1<0.故答案為:SKIPIF1<0【變式1】(2023·全國(guó)·模擬預(yù)測(cè))SKIPIF1<0的展開式中常數(shù)項(xiàng)為.(用數(shù)字作答)【答案】SKIPIF1<0【詳解】SKIPIF1<0的展開式的通項(xiàng)SKIPIF1<0(SKIPIF1<0,1,2,…,8).當(dāng)SKIPIF1<0時(shí),其展開式的常數(shù)項(xiàng)為SKIPIF1<0;當(dāng)SKIPIF1<0時(shí),其展開式中SKIPIF1<0的系數(shù)為SKIPIF1<0,則SKIPIF1<0的展開式中常數(shù)項(xiàng)為SKIPIF1<0.故答案為:SKIPIF1<0【變式2】(2023下·山東臨沂·高二統(tǒng)考期中)已知SKIPIF1<0,若其展開式中各項(xiàng)的系數(shù)和為81,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】由SKIPIF1<0展開式中各項(xiàng)的系數(shù)和為SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,解得SKIPIF1<0.故答案為:SKIPIF1<0.【變式3】(2023·江蘇·統(tǒng)考模擬預(yù)測(cè))已知SKIPIF1<0的展開式中所有項(xiàng)的系數(shù)之和為81,則展開式中含SKIPIF1<0的項(xiàng)的系數(shù)為.【答案】32【詳解】記SKIPIF1<0令SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,SKIPIF1<0則SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)為SKIPIF1<0.故答案為:32【變式4】(2023·全國(guó)·模擬預(yù)測(cè))已知SKIPIF1<0的二項(xiàng)展開式中,偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和為16,則展開式中SKIPIF1<0的系數(shù)為.【答案】720【詳解】由偶數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和為16,則有SKIPIF1<0,所以展開式中SKIPIF1<0的項(xiàng)為:SKIPIF1<0,則展開式中SKIPIF1<0的系數(shù)為:720.故答案為:720.題型06二項(xiàng)式系數(shù)最大項(xiàng)問題【典例1】(2023·四川綿陽(yáng)·統(tǒng)考二模)SKIPIF1<0展開式中,只有第4項(xiàng)的二項(xiàng)式系數(shù)最大,則n的值為(

)A.8 B.7 C.6 D.5【答案】C【詳解】因?yàn)橹挥幸豁?xiàng)二項(xiàng)式系數(shù)最大,所以n為偶數(shù),故SKIPIF1<0,得SKIPIF1<0.故選:C【典例2】(2023下·廣西防城港·高二防城港市高級(jí)中學(xué)??计谥校┮阎?xiàng)式SKIPIF1<0的展開式中僅有第4項(xiàng)的二項(xiàng)式系數(shù)最大,則SKIPIF1<0.【答案】SKIPIF1<0【詳解】因?yàn)槎?xiàng)式SKIPIF1<0的展開式中僅有第4項(xiàng)的二項(xiàng)式系數(shù)最大,根據(jù)二項(xiàng)展開式的性質(zhì),可得中間項(xiàng)的二項(xiàng)式系數(shù)最大,所以展開式一共有7項(xiàng),所以SKIPIF1<0為偶數(shù)且SKIPIF1<0,可得SKIPIF1<0.故答案為:SKIPIF1<0.【典例3】(2023上·高二課時(shí)練習(xí))(1)已知SKIPIF1<0的展開式中第SKIPIF1<0項(xiàng)和第SKIPIF1<0項(xiàng)的二項(xiàng)式系數(shù)相等,求SKIPIF1<0;(2)SKIPIF1<0的二項(xiàng)式系數(shù)的最大值是多少?【答案】(1)SKIPIF1<0;(2)SKIPIF1<0【詳解】(1)二項(xiàng)式SKIPIF1<0展開式的通項(xiàng)為SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),所以第SKIPIF1<0項(xiàng)的二項(xiàng)式系數(shù)為SKIPIF1<0,第SKIPIF1<0項(xiàng)的二項(xiàng)式系數(shù)為SKIPIF1<0,依題意可得SKIPIF1<0,所以SKIPIF1<0;(2)二項(xiàng)式SKIPIF1<0展開式的一共SKIPIF1<0項(xiàng),則第SKIPIF1<0項(xiàng)和第SKIPIF1<0項(xiàng)二項(xiàng)式系數(shù)相等同時(shí)取得最大值,又SKIPIF1<0展開式的通項(xiàng)為SKIPIF1<0(SKIPIF1<0且SKIPIF1<0)所以第SKIPIF1<0項(xiàng)的二項(xiàng)式系數(shù)為SKIPIF1<0,第SKIPIF1<0項(xiàng)二項(xiàng)式系數(shù)為SKIPIF1<0,即SKIPIF1<0的二項(xiàng)式系數(shù)的最大值是SKIPIF1<0.【變式1】(2023下·陜西寶雞·高二統(tǒng)考期末)若SKIPIF1<0的展開式中第3項(xiàng)與第9項(xiàng)的系數(shù)相等,則展開式中二項(xiàng)式系數(shù)最大的項(xiàng)為(

)A.第4項(xiàng) B.第5項(xiàng) C.第6項(xiàng) D.第7項(xiàng)【答案】C【詳解】由二項(xiàng)式定理可得第3項(xiàng)與第9項(xiàng)的系數(shù)分別為SKIPIF1<0和SKIPIF1<0,即SKIPIF1<0,由二項(xiàng)式系數(shù)性質(zhì)可得SKIPIF1<0;因此展開式中二項(xiàng)式系數(shù)最大的項(xiàng)為SKIPIF1<0,是第6項(xiàng).故選:C【變式2】(2023下·遼寧沈陽(yáng)·高二沈陽(yáng)市第十五中學(xué)??茧A段練習(xí))SKIPIF1<0的展開式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,則第四項(xiàng)為.【答案】SKIPIF1<0/SKIPIF1<0【詳解】因?yàn)檎归_式中只有第六項(xiàng)的二項(xiàng)式系數(shù)最大,即SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.故答案為:SKIPIF1<0【變式3】(2023上·高二課時(shí)練習(xí))若SKIPIF1<0的展開式中,SKIPIF1<0的系數(shù)是x的系數(shù)的7倍,求n的值及二項(xiàng)式系數(shù)的最大值.【答案】SKIPIF1<0,最大值為70.【詳解】因?yàn)镾KIPIF1<0展開式的第SKIPIF1<0項(xiàng)的通項(xiàng)公式為SKIPIF1<0,所以SKIPIF1<0的系數(shù)為SKIPIF1<0,SKIPIF1<0的系數(shù)為SKIPIF1<0,因?yàn)镾KIPIF1<0的系數(shù)等于x的系數(shù)的7倍,所以SKIPIF1<0,解得SKIPIF1<0.所以二項(xiàng)式系數(shù)的最大值為SKIPIF1<0.題型07系數(shù)最大(?。╉?xiàng)問題【典例1】(2023上·全國(guó)·高三階段練習(xí))已知SKIPIF1<0的展開式中唯有第5項(xiàng)的系數(shù)最大,則a的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】A【詳解】SKIPIF1<0的展開式的通項(xiàng)為SKIPIF1<0,由題可知SKIPIF1<0,解得SKIPIF1<0.故選:A【典例2】(2023·上海嘉定·統(tǒng)考一模)已知SKIPIF1<0的二項(xiàng)展開式中系數(shù)最大的項(xiàng)為.【答案】SKIPIF1<0【詳解】設(shè)系數(shù)最大的項(xiàng)為SKIPIF1<0,則SKIPIF1<0,解得SKIPIF1<0,因?yàn)镾KIPIF1<0且SKIPIF1<0為整數(shù),所以SKIPIF1<0,此時(shí)最大的項(xiàng)為SKIPIF1<0.故答案為:SKIPIF1<0【典例3】(2023·上海浦東新·華師大二附中??寄M預(yù)測(cè))SKIPIF1<0的二項(xiàng)展開式中系數(shù)最大的項(xiàng)為.【答案】SKIPIF1<0【詳解】設(shè)SKIPIF1<0展開式的第SKIPIF1<0項(xiàng)的系數(shù)最大,則SKIPIF1<0,解得SKIPIF1<0,所以系數(shù)最大的項(xiàng)為第SKIPIF1<0或第SKIPIF1<0項(xiàng),所以系數(shù)最大的項(xiàng)為:SKIPIF1<0,SKIPIF1<0.故答案為:SKIPIF1<0【典例4】(2023上·福建龍巖·高二福建省龍巖第一中學(xué)??茧A段練習(xí))(1)若SKIPIF1<0,求SKIPIF1<0的值;(2)在SKIPIF1<0的展開式中,①求二項(xiàng)式系數(shù)最大的項(xiàng);②系數(shù)的絕對(duì)值最大的項(xiàng)是第幾項(xiàng);【答案】(1)SKIPIF1<0;(2)①SKIPIF1<0②第6項(xiàng)和第7項(xiàng)【詳解】解:(1)∵SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0.(2)①SKIPIF1<0.二項(xiàng)式系數(shù)最大的項(xiàng)為中間項(xiàng),即第5項(xiàng).所以SKIPIF1<0.②設(shè)第SKIPIF1<0項(xiàng)系數(shù)的絕對(duì)值最大,則SKIPIF1<0,所以SKIPIF1<0解得SKIPIF1<0故系數(shù)絕對(duì)值最大的項(xiàng)是第6項(xiàng)和第7項(xiàng).【變式1】(2023·河南安陽(yáng)·統(tǒng)考二模)SKIPIF1<0的展開式中各項(xiàng)系數(shù)的最大值為(

).A.112 B.448 C.896 D.1792【答案】D【詳解】該二項(xiàng)式的通項(xiàng)公式為SKIPIF1<0,由SKIPIF1<0,可得SKIPIF1<0.因?yàn)镾KIPIF1<0,所以展開式中各項(xiàng)系數(shù)的最大值為SKIPIF1<0.故選:D【變式2】(2023上·上?!じ呷虾J幸舜ㄖ袑W(xué)??计谥校┒?xiàng)式SKIPIF1<0的展開式中,系數(shù)最大的項(xiàng)為.【答案】SKIPIF1<0【詳解】SKIPIF1<0展開式通項(xiàng)公式為SKIPIF1<0,SKIPIF1<0且SKIPIF1<0為整數(shù).要想系數(shù)最大,則SKIPIF1<0為偶數(shù),其中SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,顯然系數(shù)最大項(xiàng)為SKIPIF1<0.故答案為:SKIPIF1<0【變式3】(2023下·江蘇南通·高二江蘇省通州高級(jí)中學(xué)??茧A段練習(xí))已知SKIPIF1<0的展開式中第2項(xiàng)與第3項(xiàng)的二項(xiàng)式系數(shù)之比為2:5.(1)求n的值;(2)系數(shù)最大的項(xiàng).【答案】(1)SKIPIF1<0(2)SKIPIF1<0【詳解】(1)因?yàn)榈诙?xiàng)與第三項(xiàng)的二項(xiàng)式系數(shù)之比是SKIPIF1<0,則SKIPIF1<0,即SKIPIF1<0,解得SKIPIF1<0(舍)或SKIPIF1<0,所以n的值為6.(2)SKIPIF1<0的展開式的通項(xiàng)為SKIPIF1<0,令SKIPIF1<0,解得SKIPIF1<0,又SKIPIF1<0,SKIPIF1<0,SKIPIF1<0展開式中系數(shù)最大的項(xiàng)為第SKIPIF1<0項(xiàng),且SKIPIF1<0.【變式4】(2023下·四川雅安·高二??茧A段練習(xí))(1)若SKIPIF1<0,求SKIPIF1<0的值;(2)在SKIPIF1<0的展開式中,①求二項(xiàng)式系數(shù)最大的項(xiàng);②系數(shù)的絕對(duì)值最大的項(xiàng)是第幾項(xiàng)?【答案】(1)SKIPIF1<0;(2)①SKIPIF1<0;②第6項(xiàng)和第7項(xiàng)【詳解】(1)∵SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0.(2)①SKIPIF1<0.二項(xiàng)式系數(shù)最大的項(xiàng)為中間項(xiàng),即第5項(xiàng).所以SKIPIF1<0.②設(shè)第SKIPIF1<0項(xiàng)系數(shù)的絕對(duì)值最大,則SKIPIF1<0所以SKIPIF1<0解得SKIPIF1<0故系數(shù)絕對(duì)值最大的項(xiàng)是第6項(xiàng)和第7項(xiàng).題型08賦值法解決系數(shù)和問題【典例1】(2023上·四川攀枝花·高二統(tǒng)考期末)從①第4項(xiàng)的系數(shù)與第2項(xiàng)的系數(shù)之比是SKIPIF1<0;②第3項(xiàng)與倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)之和為36;這兩個(gè)條件中任選一個(gè),再解決補(bǔ)充完整的題目.已知SKIPIF1<0(SKIPIF1<0),且SKIPIF1<0的二項(xiàng)展開式中,____.(1)求SKIPIF1<0的值;(2)①求二項(xiàng)展開式的中間項(xiàng);②求SKIPIF1<0的值.【答案】(1)條件選擇見解析,SKIPIF1<0(2)①SKIPIF1<0;②SKIPIF1<0.【詳解】(1)若選擇①第4項(xiàng)的系數(shù)與第2項(xiàng)的系數(shù)之比是SKIPIF1<0,則有SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,求得SKIPIF1<0或SKIPIF1<0(舍去).若選擇②第3項(xiàng)與倒數(shù)第2項(xiàng)的二項(xiàng)式系數(shù)之和為36,則有SKIPIF1<0,化簡(jiǎn)可得SKIPIF1<0,求得SKIPIF1<0或SKIPIF1<0(舍去).(2)由(1)可得SKIPIF1<0,①SKIPIF1<0的二項(xiàng)展開式的中間項(xiàng)為SKIPIF1<0.②二項(xiàng)式SKIPIF1<0展開式的通項(xiàng)公式為SKIPIF1<0,所以SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為正數(shù),SKIPIF1<0、SKIPIF1<0、SKIPIF1<0、SKIPIF1<0為負(fù)數(shù).在SKIPIF1<0中,令SKIPIF1<0.再令SKIPIF1<0,可得SKIPIF1<0,∴SKIPIF1<0.【典例2】(2023下·山東濟(jì)南·高二??茧A段練習(xí))已知SKIPIF1<0,求:(1)SKIPIF1<0;(2)SKIPIF1<0.【答案】(1)1(2)625【詳解】(1)由SKIPIF1<0,令SKIPIF1<0得SKIPIF1<0,所以SKIPIF1<0.(2)在SKIPIF1<0中,令SKIPIF1<0得SKIPIF1<0①,令SKIPIF1<0得SKIPIF1<0②,所以SKIPIF1<0.【典例3】(2023上·高二課時(shí)練習(xí))設(shè)SKIPIF1<0.求:(1)SKIPIF1<0的值;(2)SKIPIF1<0的值;(3)SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【詳解】(1)由SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0;令SKIPIF1<0,得SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0;(2)令SKIPIF1<0,得SKIPIF1<0①,令SKIPIF1<0,得SKIPIF1<0②,①SKIPIF1<0②得,SKIPIF1<0,所以SKIPIF1<0;(3)根據(jù)展開式的通項(xiàng)公式知SKIPIF1<0,SKIPIF1<0,SKIPIF1<0為負(fù),SKIPIF1<0,SKIPIF1<0為正;令SKIPIF1<0,所以SKIPIF1<0.【典例4】(2023下·江蘇·高二校聯(lián)考階段練習(xí))若SKIPIF1<0,求下列各式的值.(1)SKIPIF1<0;(2)SKIPIF1<0;(3)SKIPIF1<0.【答案】(1)1024(2)58024(3)393660【詳解】(1)令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0.SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),可得SKIPIF1<0.(2)令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0.(3)因?yàn)镾KIPIF1<0,兩邊對(duì)SKIPIF1<0求導(dǎo)得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0.【變式1】(2023上·上?!じ叨虾J械诙袑W(xué)??茧A段練習(xí))若SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求SKIPIF1<0的值;(3)求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【詳解】(1)令SKIPIF1<0,則SKIPIF1<0,①(2)令SKIPIF1<0,則SKIPIF1<0,②令SKIPIF1<0,則SKIPIF1<0,SKIPIF1<0,SKIPIF1<0;(3)SKIPIF1<0,即SKIPIF1<0為含SKIPIF1<0項(xiàng)的系數(shù),為SKIPIF1<0,則SKIPIF1<0.【變式2】(2023上·高二單元測(cè)試)已知SKIPIF1<0.(1)求SKIPIF1<0;(2)求SKIPIF1<0;(3)求SKIPIF1<0.【答案】(1)800;(2)SKIPIF1<0;(3)0.【詳解】(1)在SKIPIF1<0展開式中,含SKIPIF1<0的項(xiàng)為SKIPIF1<0,所以SKIPIF1<0.(2)令SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,所以SKIPIF1<0.(3)SKIPIF1<0SKIPIF1<0.因?yàn)镾KIPIF1<0,所以SKIPIF1<0,故SKIPIF1<0【變式3】(2023下·河北保定·高二??茧A段練習(xí))設(shè)設(shè)SKIPIF1<0十SKIPIF1<0.(1)求SKIPIF1<0的值;(2)求SKIPIF1<0的值;(3)求SKIPIF1<0的值.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【詳解】(1)令SKIPIF1<0,則SKIPIF1<0①(2)令SKIPIF1<0,則SKIPIF1<0②,SKIPIF1<0①SKIPIF1<0②SKIPIF1<0可得:SKIPIF1<0;(3)因?yàn)镾KIPIF1<0的和為二項(xiàng)式SKIPIF1<0的展開式的各個(gè)項(xiàng)的系數(shù)和,所以令SKIPIF1<0,則SKIPIF1<0.【變式4】(2023下·黑龍江齊齊哈爾·高二齊齊哈爾市恒昌中學(xué)校??计谀┮阎猄KIPIF1<0.(1)求SKIPIF1<0的值;(2)求SKIPIF1<0的值.【答案】(1)2(2)18【詳解】(1)解:由SKIPIF1<0,令SKIPIF1<0,可得SKIPIF1<0;令SKIPIF1<0,可得SKIPIF1<0,所以SKIPIF1<0,所以SKIPIF1<0.(2)解:因?yàn)镾KIPIF1<0,兩邊同時(shí)求導(dǎo)數(shù),可得SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0.題型09有關(guān)整除或求余問題【典例1】(2024上·河北廊坊·高三河北省文安縣第一中學(xué)校聯(lián)考期末)設(shè)SKIPIF1<0,且SKIPIF1<0,若SKIPIF1<0能被7整除,則SKIPIF1<0(

)A.-4 B.-5 C.-6 D.-7【答案】C【詳解】SKIPIF1<0,因?yàn)镾KIPIF1<0能被7整除,且SKIPIF1<0能被7整除,故SKIPIF1<0能被7整除,又SKIPIF1<0,所以SKIPIF1<0.故選:C.【典例2】(2023上·山東·高二校聯(lián)考階段練習(xí))SKIPIF1<0被8除的余數(shù)為(

)A.1 B.3 C.5 D.7【答案】B【詳解】SKIPIF1<0SKIPIF1<0SKIPIF1<0其中SKIPIF1<0是8的整數(shù)倍,故SKIPIF1<0被8除的余數(shù)為3.故選:B【典例3】(2023下·江蘇連云港·高二??茧A段練習(xí))如果今天是星期三,經(jīng)過7天后還是星期三,那么經(jīng)過SKIPIF1<0天后是(

)A.星期三 B.星期四 C.星期五 D.星期六【答案】B【詳解】因?yàn)镾KIPIF1<0SKIPIF1<0,所以SKIPIF1<0除以7的余數(shù)為1,所以經(jīng)過SKIPIF1<0天后是星期四,故選:B.【變式1】(2024下·全國(guó)·高二隨堂練習(xí))設(shè)SKIPIF1<0的小數(shù)部分為x,則SKIPIF1<0(

)A.1 B.2 C.3 D.4【答案】B【詳解】由SKIPIF1<0,得SKIPIF1<0的整數(shù)部分為4,則SKIPIF1<0,所以SKIPIF1<0,即SKIPIF1<0,故SKIPIF1<0.故選:B【變式2】(2023上·山東·高三山東省實(shí)驗(yàn)中學(xué)??茧A段練習(xí))二項(xiàng)式SKIPIF1<0展開式的各項(xiàng)系數(shù)之和被7除所得余數(shù)為.【答案】6【詳解】令SKIPIF1<0得SKIPIF1<0,由于SKIPIF1<0,由于SKIPIF1<0,SKIPIF1<0均能被7整除,所以余數(shù)為6,故答案為:6【變式3】(2023上·高二課時(shí)練習(xí))用二項(xiàng)式定理證明SKIPIF1<0能被8整除.【答案】見解析【詳解】證明:SKIPIF1<0SKIPIF1<0SKIPIF1<0能被8整除.所以SKIPIF1<0能被8整除.題型10利用二項(xiàng)式定理近似計(jì)算【典例1】(2023·江西南昌·統(tǒng)考一模)二項(xiàng)式定理,又稱牛頓二項(xiàng)式定理,由艾薩克·牛頓提出.二項(xiàng)式定理可以推廣到任意實(shí)數(shù)次冪,即廣義二項(xiàng)式定理:對(duì)于任意實(shí)數(shù)SKIPIF1<0,SKIPIF1<0,當(dāng)SKIPIF1<0比較小的時(shí)候,取廣義二項(xiàng)式定理的展開式的前兩項(xiàng)可得:SKIPIF1<0,并且SKIPIF1<0的值越小,所得結(jié)果就越接近真實(shí)數(shù)據(jù).用這個(gè)方法計(jì)算SKIPIF1<0的近似值,可以這樣操作:SKIPIF1<0SKIPIF1<0,用這樣的方法,估計(jì)SKIPIF1<0的近似值約為(

)A.2.922 B.2.928 C.2.926 D.2.930【答案】C【詳解】SKIPIF1<0,故選:C.【典例2】(2023·江蘇·高二專題練習(xí))估算SKIPIF1<0的結(jié)果,精確到0.01的近似值為(

)A.30.84 B.31.84 C.30.40 D.32.16【答案】A【詳解】原式SKIPIF1<0SKIPIF1<0+SKIPIF1<0SKIPIF1<0.故選:A.【變式1】(2023·全國(guó)·高二專題練習(xí))SKIPIF1<0的計(jì)算結(jié)果精確到0.001的近似值是(

)A.0.930 B.0.931 C.0.932 D.0.933【答案】C【詳解】SKIPIF1<0.故選:C【變式2】(2023·全國(guó)·高三專題練習(xí))SKIPIF1<0的計(jì)算結(jié)果精確到0.01的近似值是.【答案】1.34【詳解】SKIPIF1<0故答案為:SKIPIF1<0A夯實(shí)基礎(chǔ)B能力提升A夯實(shí)基礎(chǔ)一、單選題1.(2024上·遼寧沈陽(yáng)·高二校聯(lián)考期末)SKIPIF1<0的展開式中含SKIPIF1<0的項(xiàng)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】C【詳解】SKIPIF1<0的展開式的通項(xiàng)公式為SKIPIF1<0,則SKIPIF1<0,得SKIPIF1<0,所以含SKIPIF1<0的項(xiàng)是SKIPIF1<0.故選:C.2.(2023上·湖北黃岡·高三校聯(lián)考期中)若SKIPIF1<0為一組從小到大排列的數(shù)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0的第六十百分位數(shù),則二項(xiàng)式SKIPIF1<0的展開式的常數(shù)項(xiàng)是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0【答案】B【詳解】由SKIPIF1<0,可知SKIPIF1<0,所以二項(xiàng)式為SKIPIF1<0,其展開式的通項(xiàng)為SKIPIF1<0,令SKIPIF1<0,即SKIPIF1<0,所以常數(shù)項(xiàng)為SKIPIF1<0,故選:B.3.(2023上·江蘇·高三校聯(lián)考階段練習(xí))在SKIPIF1<0的展開式中,含SKIPIF1<0項(xiàng)的系數(shù)為(

)A.SKIPIF1<0 B.20 C.SKIPIF1<0 D.15【答案】A【詳解】SKIPIF1<0的第SKIPIF1<0項(xiàng)為SKIPIF1<0,令SKIPIF1<0,則SKIPIF1<0,所以SKIPIF1<0的展開式中,含SKIPIF1<0項(xiàng)為SKIPIF1<0,系數(shù)為SKIPIF1<0.故選:A4.(2023下·山東濱州·高二統(tǒng)考期中)若SKIPIF1<0的展開式中SKIPIF1<0的系數(shù)為40,則SKIPIF1<0(

)A.2 B.SKIPIF1<0 C.4 D.SKIPIF1<0【答案】B【詳解】SKIPIF1<0的展開式的SKIPIF1<0項(xiàng)為SKIPIF1<0,因?yàn)镾KIPIF1<0的展開式中SKIPIF1<0的系數(shù)為40,所以SKIPIF1<0,解得SKIPIF1<0.故選:B.5.(2023上·福建莆田·高二莆田華僑中學(xué)??计谀┤鬝KIPIF1<0,則SKIPIF1<0(

)A.1 B.513 C.512 D.511【答案】D【詳解】令SKIPIF1<0,得SKIPIF1<0,令SKIPIF1<0,得SKIPIF1<0,所以SKIPIF1<0,故選:D6.(2023下·四川資陽(yáng)·高二統(tǒng)考期末)SKIPIF1<0展開式中,系數(shù)最大的項(xiàng)是(

)A.第5,6項(xiàng) B.第6,7項(xiàng) C.第6項(xiàng) D.第7項(xiàng)【答案】D【詳解】因?yàn)镾KIPIF1<0的展開式的通項(xiàng)為SKIPIF1<0,SKIPIF1<0,所以SKIPIF1<0展開式中各項(xiàng)的系數(shù)即為其二項(xiàng)式系數(shù),根據(jù)二項(xiàng)式系數(shù)的性質(zhì)有,第7項(xiàng)的二項(xiàng)式系數(shù)最大,故A,B,C錯(cuò)誤.故選:D.7.(2024上·遼寧·高二遼寧實(shí)驗(yàn)中學(xué)校聯(lián)考期末)SKIPIF1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論