上海市華實高中2024年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第1頁
上海市華實高中2024年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第2頁
上海市華實高中2024年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第3頁
上海市華實高中2024年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第4頁
上海市華實高中2024年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

上海市華實高中2024年高一數(shù)學(xué)第二學(xué)期期末聯(lián)考試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知某運動員每次投籃命中的概率都為40%.現(xiàn)采用隨機模擬的方法估計該運動員三次投籃恰有兩次命中的概率:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三個隨機數(shù)為一組,代表三次投籃的結(jié)果.經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù):907966191925271932812458569683431257393027556488730113537989據(jù)此估計,該運動員三次投籃恰有兩次命中的概率為()A.0.35 B.0.25 C.0.20 D.0.152.已知A(2,4)與B(3,3)關(guān)于直線l對稱,則直線l的方程為().A.x+y=0 B.x-y=0C.x-y+1=0 D.x+y-6=03.設(shè)的內(nèi)角所對邊分別為.則該三角形()A.無解 B.有一解 C.有兩解 D.不能確定4.已知,,當時,不等式恒成立,則的取值范圍是A. B. C. D.5.設(shè)是等差數(shù)列的前項和,若,則A. B. C. D.6.已知關(guān)于的不等式的解集為空集,則實數(shù)的取值范圍是()A. B. C. D.7.已知數(shù)列an的前4項為:l,-12,13,A.a(chǎn)n=C.a(chǎn)n=8.已知圓M:x2+y2-2ay=0a>0截直線x+y=0A.內(nèi)切 B.相交 C.外切 D.相離9.以拋物線C的頂點為圓心的圓交C于A、B兩點,交C的準線于D、E兩點.已知|AB|=,|DE|=,則C的焦點到準線的距離為()A.2 B.4 C.6 D.810.定義運算:.若不等式的解集是空集,則實數(shù)的取值范圍是()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知等比數(shù)列的首項為,公比為,其前項和為,下列命題中正確的是______.(寫出全部正確命題的序號)(1)等比數(shù)列單調(diào)遞增的充要條件是,且;(2)數(shù)列:,,,……,也是等比數(shù)列;(3);(4)點在函數(shù)(,為常數(shù),且,)的圖像上.12.設(shè)y=f(x)是定義域為R的偶函數(shù),且它的圖象關(guān)于點(2,0)對稱,若當x∈(0,2)時,f(x)=x2,則f(19)=_____13.函數(shù)的反函數(shù)的圖象經(jīng)過點,那么實數(shù)的值等于____________.14.如圖,圓錐型容器內(nèi)盛有水,水深,水面直徑放入一個鐵球后,水恰好把鐵球淹沒,則該鐵球的體積為________15.正方形和內(nèi)接于同一個直角三角形ABC中,如圖所示,設(shè),若兩正方形面積分別為=441,=440,則=______16.已知函數(shù),則函數(shù)的最小值是___.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知,.(1)計算及、;(2)設(shè),,,若,試求此時和滿足的函數(shù)關(guān)系式,并求的最小值.18.已知數(shù)列的各項排成如圖所示的三角形數(shù)陣,數(shù)陣中,每一行的第一個數(shù),,,,…構(gòu)成等差數(shù)列,是的前n項和,且,(1)若數(shù)陣中從第三行開始每行中的數(shù)按從左到右的順序均構(gòu)成公比為正數(shù)的等比數(shù)列,且公比相等,已知,求的值;(2)設(shè),對任意,求及的最大值.19.如圖,在直三棱柱中,,,是棱的中點.(1)求證:;(2)求證:.20.將函數(shù)的圖像向右平移1個單位,得到函數(shù)的圖像.(1)求的單調(diào)遞增區(qū)間;(3)設(shè)為坐標原點,直線與函數(shù)的圖像自左至右相交于點,,,求的值.21.對于三個實數(shù)、、,若成立,則稱、具有“性質(zhì)”.(1)試問:①,0是否具有“性質(zhì)2”;②(),0是否具有“性質(zhì)4”;(2)若存在及,使得成立,且,1具有“性質(zhì)2”,求實數(shù)的取值范圍;(3)設(shè),,,為2019個互不相同的實數(shù),點()均不在函數(shù)的圖象上,是否存在,且,使得、具有“性質(zhì)2018”,請說明理由.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】

已知三次投籃共有20種,再得到恰有兩次命中的事件的種數(shù),然后利用古典概型的概率公式求解.【詳解】三次投籃共有20種,恰有兩次命中的事件有:191,271,932,812,393,有5種∴該運動員三次投籃恰有兩次命中的概率為故選:B【點睛】本題主要考古典概型的概率求法,還考查了運算求解的能力,屬于基礎(chǔ)題.2、C【解析】試題分析:兩點關(guān)于直線對稱,則,點與的中點在直線上,,那么直線的斜率等于,中點坐標為,即中點坐標為,,整理得:,故選C.考點:求直線方程3、C【解析】

利用正弦定理以及大邊對大角定理求出角,從而判斷出該三角形解的個數(shù).【詳解】由正弦定理得,所以,,,,或,因此,該三角形有兩解,故選C.【點睛】本題考查三角形解的個數(shù)的判斷,解題時可以充分利用解的個數(shù)的等價條件來進行判斷,具體來講,在中,給定、、,該三角形解的個數(shù)判斷如下:(1)為直角或鈍角,,一解;,無解;(2)為銳角,或,一解;,兩解;,無解.4、B【解析】

根據(jù)為定值,那么乘以后值不變,由基本不等式可消去x,y后,對得到的不等式因式分解,即可解得m的值.【詳解】因為,,,所以.因為不等式恒成立,所以,整理得,解得,即.【點睛】本題考查基本不等式,由為定值和已知不等式相乘來構(gòu)造基本不等式,最后含有根式的因式分解也是解題關(guān)鍵.5、A【解析】,,選A.6、C【解析】

由題意得出關(guān)于的不等式的解集為,由此得出或,在成立時求出實數(shù)的值代入不等式進行驗證,由此解不等式可得出實數(shù)的取值范圍.【詳解】由題意知,關(guān)于的不等式的解集為.(1)當,即.當時,不等式化為,合乎題意;當時,不等式化為,即,其解集不為,不合乎題意;(2)當,即時.關(guān)于的不等式的解集為.,解得.綜上可得,實數(shù)的取值范圍是.故選:C.【點睛】本題考查二次不等式在上恒成立問題,求解時根據(jù)二次函數(shù)圖象轉(zhuǎn)化為二次項系數(shù)和判別式的符號列不等式組進行求解,考查化歸與轉(zhuǎn)化思想,屬于中等題.7、D【解析】

分母與項數(shù)一樣,分子都是1,正負號相間出現(xiàn),依此可得通項公式【詳解】正負相間用(-1)n-1表示,∴a故選D.【點睛】本題考查數(shù)列的通項公式,屬于基礎(chǔ)題,關(guān)鍵是尋找規(guī)律,尋找與項數(shù)有關(guān)的規(guī)律.8、B【解析】化簡圓M:x2+(y-a)2=a又N(1,1),r9、B【解析】

如圖,設(shè)拋物線方程為,交軸于點,則,即點縱坐標為,則點橫坐標為,即,由勾股定理知,,即,解得,即的焦點到準線的距離為4,故選B.【點睛】10、B【解析】

根據(jù)定義可得的解集是空集,即恒成立,再對分類討論可得結(jié)果.【詳解】由題意得的解集是空集,即恒成立.當時,不等式即為,不等式恒成立;當時,若不等式恒成立,則即解得.綜上可知:.故選:B【點睛】本題考查了二次不等式的恒成立問題,考查了分類討論思想,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、(3)【解析】

根據(jù)遞增數(shù)列的概念,以及等比數(shù)列的通項公式,充分條件與必要條件的概念,可判斷(1);令,為偶數(shù),可判斷(2);根據(jù)等比數(shù)列的性質(zhì),直接計算,可判斷(3);令,結(jié)合題意,可判斷(4),進而可得出結(jié)果.【詳解】(1)若等比數(shù)列單調(diào)遞增,則,所以或,故且不是等比數(shù)列單調(diào)遞增的充要條件;(1)錯;(2)若,為偶數(shù),則,,因等比數(shù)列中的項不為,故此時數(shù)列,,,……,不成等比數(shù)列;(2)錯;(3),所以(3)正確;(4)若,則,若點在函數(shù)的圖像上,則,因,,故不能對任意恒成立;故(4)錯.故答案為:(3)【點睛】本題主要考命題真假的判定,熟記等比數(shù)列的性質(zhì),以及等比數(shù)列的通項公式與求和公式即可,屬于常考題型.12、﹣1.【解析】

根據(jù)題意,由函數(shù)的奇偶性與對稱性分析可得,即函數(shù)是周期為的周期函數(shù),據(jù)此可得,再由函數(shù)的解析式計算即可.【詳解】根據(jù)題意,是定義域為的偶函數(shù),則,又由得圖象關(guān)于點對稱,則,所以,即函數(shù)是周期為的周期函數(shù),所以,又當時,,則,所以.故答案為:.【點睛】本題考查函數(shù)的奇偶性與周期性的性質(zhì)以及應(yīng)用,注意分析函數(shù)的周期性,屬于基礎(chǔ)題.13、【解析】

根據(jù)原函數(shù)與其反函數(shù)的圖象關(guān)于直線對稱,可得函數(shù)的圖象經(jīng)過點,由此列等式可得結(jié)果.【詳解】因為函數(shù)的反函數(shù)的圖象經(jīng)過點,所以函數(shù)的圖象經(jīng)過點,所以,即,解得.故答案為:【點睛】本題考查了原函數(shù)與其反函數(shù)的圖象的對稱性,屬于基礎(chǔ)題.14、【解析】

通過將圖形轉(zhuǎn)化為平面圖形,然后利用放球前后體積等量關(guān)系求得球的體積.【詳解】作出相關(guān)圖形,顯然,因此,因此放球前,球O與邊相切于點M,故,則,所以,,所以放球后,而,而,解得.【點睛】本題主要考查圓錐體積與球體積的相關(guān)計算,建立體積等量關(guān)系是解決本題的關(guān)鍵,意在考查學(xué)生的劃歸能力,計算能力和分析能力.15、【解析】

首先根據(jù)在正方形S1和S2內(nèi),S1=441,S2=440,分別求出兩個正方形的邊長,然后分別表示出AF、FC、AM、MC的長度,最后根據(jù)AF+FC=AM+MC,列出關(guān)于α的三角函數(shù)等式,求出sin2α的值即可.【詳解】因為S1=441,S2=440,所以FD21,MQ=MN,因為AC=AF+FC2121,AC=AM+MCMNcosαcosα,所以:21cosα,整理,可得:(sinαcosα+1)=21(sinα+cosα),兩邊平方,可得110sin22α﹣sin2α﹣1=0,解得sin2α或sin2α(舍去),故sin2α.故答案為:.【點睛】本題主要考查了三角函數(shù)的求值問題,考查了正方形、直角三角形的性質(zhì),屬于中檔題,解答此題的關(guān)鍵是分別表示出AF、FC、AM、MC的長度,最后根據(jù)AF+FC=AM+MC,列出關(guān)于α的三角函數(shù)等式.16、5【解析】因為,所以,函數(shù),當且僅當,即時等號成立.點睛:本題考查了基本不等式的應(yīng)用,屬于基礎(chǔ)題.在用基本不等式時,注意"一正二定三相等"這三個條件,關(guān)鍵是找定值,在本題中,將拆成,湊成定值,再用基本不等式求出最小值.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),,;(2),.【解析】

(1)根據(jù)數(shù)量積和模的坐標運算計算;(2)由可得出,然后由二次函數(shù)性質(zhì)求得最小值.【詳解】(1)由題意及,同理,.(2)∵,∴,∴,即,又,∴時,.【點睛】本題考查向量的數(shù)量積與模的坐標運算,考查向量垂直與數(shù)量積的關(guān)系.掌握數(shù)量積的性質(zhì)是解題基礎(chǔ).其中.18、(1)(2),.【解析】

(1)先求出的通項公式,再計算等比數(shù)列的公比,最后得到.(2)先計算,再利用裂項求和計算得到,設(shè)函數(shù),通過均值不等式得到答案.【詳解】(1)為等差數(shù)列,設(shè)公差為,,,,,.設(shè)從第3行起,每行的公比都是q,且,,,,,故是數(shù)陣中第10行第5個數(shù),而.(2),.設(shè):(當且僅當時,等號成立)時,(其他方法酌情給分)【點睛】本題考查了等差數(shù)列等比數(shù)列,裂項求和,均值不等式,綜合性強,意在考查學(xué)生的計算能力和解決問題的能力.19、(1)見詳解;(2)見詳解.【解析】

(1)連接AC1,設(shè)AC1∩A1C=O,連接OD,可求O為AC1的中點,D是棱AB的中點,利用中位線的性質(zhì)可證OD∥BC1,根據(jù)線面平行的判斷定理即可證明BC1∥平面A1CD.(2)由(1)可證平行四邊形ACC1A1是菱形,由其性質(zhì)可得AC1⊥A1C,利用線面垂直的性質(zhì)可證AB⊥AA1,根據(jù)AB⊥AC,利用線面垂直的判定定理可證AB⊥平面ACC1A1,利用線面垂直的性質(zhì)可證AB⊥A1C,又AC1⊥A1C,根據(jù)線面垂直的判定定理可證A1C⊥平面ABC1,利用線面垂直的性質(zhì)即可證明BC1⊥A1C.【詳解】(1)連接AC1,設(shè)AC1∩A1C=O,連接OD,在直三棱柱ABC﹣A1B1C1中,側(cè)面ACC1A1是平行四邊形,所以:O為AC1的中點,又因為:D是棱AB的中點,所以:OD∥BC1,又因為:BC1?平面A1CD,OD?平面A1CD,所以:BC1∥平面A1CD.(2)由(1)可知:側(cè)面ACC1A1是平行四邊形,因為:AC=AA1,所以:平行四邊形ACC1A1是菱形,所以:AC1⊥A1C,在直三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,因為:AB?平面ABC,所以:AB⊥AA1,又因為:AB⊥AC,AC∩AA1=A,AC?平面ACC1A1,AA1?平面ACC1A1,所以:AB⊥平面ACC1A1,因為:A1C?平面ACC1A1,所以:AB⊥A1C,又因為:AC1⊥A1C,AB∩AC1=A,AB?平面ABC1,AC1?平面ABC1,所以:A1C⊥平面ABC1,因為:BC1?平面ABC1,所以:BC1⊥A1C.【點睛】本題主要考查了線面平行的判定,線面垂直的性質(zhì),線面垂直的判定,考查了空間想象能力和推理論證能力,屬于中檔題.20、(1)();(2)【解析】

(1)通過“左加右減”可得到函數(shù)的解析式,從而求得的單調(diào)遞增區(qū)間;(2)先求得直線與軸的交點為,則,又,關(guān)于點對稱,所以,從而.【詳解】(1)令,,的單調(diào)遞增區(qū)間是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論