2024屆濰坊市重點中學(xué)數(shù)學(xué)高一下期末預(yù)測試題含解析_第1頁
2024屆濰坊市重點中學(xué)數(shù)學(xué)高一下期末預(yù)測試題含解析_第2頁
2024屆濰坊市重點中學(xué)數(shù)學(xué)高一下期末預(yù)測試題含解析_第3頁
2024屆濰坊市重點中學(xué)數(shù)學(xué)高一下期末預(yù)測試題含解析_第4頁
2024屆濰坊市重點中學(xué)數(shù)學(xué)高一下期末預(yù)測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆濰坊市重點中學(xué)數(shù)學(xué)高一下期末預(yù)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.等比數(shù)列的前項和為,,且成等差數(shù)列,則等于()A. B. C. D.2.若正實數(shù)滿足,且恒成立,則實數(shù)的取值范圍為()A. B. C. D.3.在平行四邊形ABCD中,,,E是CD的中點,則()A.2 B.-3 C.4 D.64.已知圓心在軸上的圓經(jīng)過,兩點,則的方程為()A. B.C. D.5.若,,且與夾角為,則()A.3 B. C.2 D.6.函數(shù)的部分圖象如圖中實線所示,圖中圓與的圖象交于兩點,且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點成中心對稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點成中心對稱7.已知公式為正數(shù)的等比數(shù)列滿足:,,則前5項和()A.31 B.21 C.15 D.118.為數(shù)列的前n項和,若,則的值為()A.-7 B.-4 C.-2 D.09.為了得到函數(shù)的圖象,只需把函數(shù)的圖象上的所有的點()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位10.已知,且為第二象限角,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),,,,,為坐標原點,若、、三點共線,則的最小值是_______.12.若集合,,則集合________.13.已知為的三個內(nèi)角A,B,C的對邊,向量,.若,且,則B=14.在正項等比數(shù)列中,,,則公比________.15.如圖,在等腰直角三角形ABC中,,,以AB為直徑在外作半圓O,P是半圓弧AB上的動點,點Q在斜邊BC上,若,則的取值范圍是________.16.已知等邊,為中點,若點是所在平面上一點,且滿足,則__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,漁船甲位于島嶼的南偏西方向的處,且與島嶼相距12海里,漁船乙以10海里/小時的速度從島嶼出發(fā)沿正北方向航行,若漁船甲同時從處出發(fā)沿北偏東的方向追趕漁船乙,剛好用2小時追上.(1)求漁船甲的速度;(2)求的值.18.已知,,與的夾角為,,,當實數(shù)為何值時,(1);(2).19.已知,,,且.(1)若,求的值;(2)設(shè),,若的最大值為,求實數(shù)的值.20.已知直線,,是三條不同的直線,其中.(1)求證:直線恒過定點,并求出該點的坐標;(2)若以,的交點為圓心,為半徑的圓與直線相交于兩點,求的最小值.21.如圖,在四邊形中,,,,.(1)若,求;(2)求四邊形面積的最大值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

根據(jù)等差中項的性質(zhì)列方程,并轉(zhuǎn)化為的形式,由此求得的值,進而求得的值.【詳解】由于成等差數(shù)列,故,即,所以,,所以,故選A.【點睛】本小題主要考查等差中項的性質(zhì),考查等比數(shù)列基本量的計算,屬于基礎(chǔ)題.2、A【解析】

先利用基本不等求出的最小值,然后根據(jù)恒成立,可得,再求出a的范圍.【詳解】因為正實數(shù)x,y滿足,,當且僅當,即時取等號,恒成立,所以只需,,,的取值范圍為,故選:A.【點睛】本題主要考查不等式恒成立問題以及基本不等式求最值,解題時注意“一正、二定、三相等”的應(yīng)用,本題屬于中檔題.3、A【解析】

由平面向量的線性運算可得,再結(jié)合向量的數(shù)量積運算即可得解.【詳解】解:由,,所以,,,則,故選:A.【點睛】本題考查了平面向量的線性運算,重點考查了向量的數(shù)量積運算,屬中檔題.4、A【解析】

由圓心在軸上設(shè)出圓心坐標,設(shè)出圓的方程,將,兩點坐標代入,即可求得圓心坐標和半徑,進而得圓的方程.【詳解】因為圓心在軸上,設(shè)圓心坐標為,半徑為設(shè)圓的方程為因為圓經(jīng)過,兩點代入可得解方程求得所以圓C的方程為故選:A【點睛】本題考查了圓的方程求法,關(guān)鍵是求出圓心和半徑,屬于基礎(chǔ)題.5、B【解析】

由題意利用兩個向量數(shù)量積的定義,求得的值,再根據(jù),計算求得結(jié)果.【詳解】由題意若,,且與夾角為,可得,.故選:B.【點睛】本題考查向量數(shù)量積的定義、向量的模的方法,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意不要錯選成A答案.6、B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點的橫坐標為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當時,,即函數(shù)的一個對稱中心為,即函數(shù)的圖象關(guān)于點成中心對稱.故選B.【點睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運算與求解能力,屬于基礎(chǔ)題.7、A【解析】

由條件求出數(shù)列的公比.再利用等比數(shù)列的前項求和公式即可得出.【詳解】公比為正數(shù)的等比數(shù)列滿足:,則,即.所以,所以.故選:A【點睛】本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.8、A【解析】

依次求得的值,進而求得的值.【詳解】當時,;當時,,;當時,;故.故選:A.【點睛】本小題主要考查根據(jù)遞推關(guān)系式求數(shù)列每一項,屬于基礎(chǔ)題.9、D【解析】

把系數(shù)2提取出來,即即可得結(jié)論.【詳解】,因此要把圖象向右平移個單位.故選D.【點睛】本題考查三角函數(shù)的圖象平移變換.要注意平移變換是加減平移單位,即向右平移個單位得圖象的解析式為而不是.10、D【解析】

首先根據(jù)題意得到,,再計算即可.【詳解】因為,且為第二象限角,,..故選:D【點睛】本題主要考查正切二倍角的計算,同時考查了三角函數(shù)的誘導(dǎo)公式和同角三角函數(shù)的關(guān)系,屬于簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)三點共線求得的的關(guān)系式,利用基本不等式求得所求表達式的最小值.【詳解】依題意,由于三點共線,所以,化簡得,故,當且僅當,即時,取得最小值【點睛】本小題主要考查三點共線的向量表示,考查利用基本不等式求最小值,屬于基礎(chǔ)題.12、【解析】由題意,得,,則.13、【解析】

根據(jù)得,再利用正弦定理得,化簡得出角的大小。再根據(jù)三角形內(nèi)角和即可得B.【詳解】根據(jù)題意,由正弦定理可得則所以答案為?!军c睛】本題主要考查向量與三角形正余弦定理的綜合應(yīng)用,屬于基礎(chǔ)題。14、【解析】

利用等比中項可求出,再由可求出公比.【詳解】因為,,所以,,解得.【點睛】本題考查了等比數(shù)列的性質(zhì),考查了計算能力,屬于基礎(chǔ)題.15、【解析】

建立直角坐標系,得出的坐標,利用數(shù)量積的坐標表示得出,結(jié)合正弦函數(shù)的單調(diào)性得出的取值范圍.【詳解】取中點為,建立如下圖所示的直角坐標系則,設(shè),,則,則設(shè)點,則,則當,即時,取最大值當,即時,取最小值則的取值范圍是故答案為:【點睛】本題主要考查了利用數(shù)量積求參數(shù)以及求正弦型函數(shù)的最值,屬于較難題.16、0【解析】

利用向量加、減法的幾何意義可得,再利用向量數(shù)量積的定義即可求解.【詳解】根據(jù)向量減法的幾何意義可得:,即,所以.故答案為:0【點睛】本題考查了向量的加、減法的幾何意義以及向量的數(shù)量積,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)14海里/小時;(2).【解析】

(1),∴∴,∴V甲海里/小時;(2)在中,由正弦定理得∴∴.點評:主要是考查了正弦定理和余弦定理的運用,屬于基礎(chǔ)題.18、(1);(2).【解析】試題分析:(1)利用平面向量共線的判定條件進行求解;(2),利用平面向量的數(shù)量積為0進行求解.試題解析:(1)若,則存在實數(shù),使,即,則,解得得;(2)若,則,解得.考點:1.平面向量共線的判定;2.平面向量垂直的判定.19、(1)0(2)【解析】

(1)通過可以算出,移項、兩邊平方即可算出結(jié)果.(2)通過向量的運算,解出,再通過最大值根的分布,求出的值.【詳解】(1)通過可以算出,即故答案為0.(2),設(shè),,,即的最大值為;①當時,(滿足條件);②當時,(舍);③當時,(舍)故答案為【點睛】當式子中同時出現(xiàn)時,常??梢岳脫Q元法,把用進行表示,但計算過程中也要注意自變量的取值范圍;二次函數(shù)最值一定要注意對稱軸是否在規(guī)定區(qū)間范圍內(nèi),再討論最后的結(jié)果.20、(1)證明見解析;定點坐標;(2)【解析】

(1)將整理為:,可得方程組,從而求得定點;(2)直線方程聯(lián)立求得圓心坐標,將問題轉(zhuǎn)化為求圓心到直線距離的最大值的問題,根據(jù)圓的性質(zhì)可知最大值為,從而求得最小值.【詳解】(1)證明:,可化為:令,解得:,直線恒過定點(2)將,聯(lián)立可得交點坐標設(shè)到直線的距離為,則則求的最小值,即求的最大值由(1)知,直線恒過點,則最大時,,即【點睛】本題考查直線過定點問題的求解、直線被圓截得弦長的最值的求解,關(guān)鍵是能夠根據(jù)圓的性質(zhì)確定求解弦長的最小值即為求解圓心到直線距離的最大值,求得最大值從而代入求得弦長最小值.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論