貴州省遵義市航天高級(jí)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題含解析_第1頁(yè)
貴州省遵義市航天高級(jí)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題含解析_第2頁(yè)
貴州省遵義市航天高級(jí)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題含解析_第3頁(yè)
貴州省遵義市航天高級(jí)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題含解析_第4頁(yè)
貴州省遵義市航天高級(jí)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

貴州省遵義市航天高級(jí)中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末質(zhì)量檢測(cè)試題注意事項(xiàng)1.考試結(jié)束后,請(qǐng)將本試卷和答題卡一并交回.2.答題前,請(qǐng)務(wù)必將自己的姓名、準(zhǔn)考證號(hào)用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請(qǐng)認(rèn)真核對(duì)監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號(hào)與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對(duì)應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動(dòng),請(qǐng)用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號(hào)等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.如圖,,下列等式中成立的是()A. B.C. D.2.已知、的取值如下表所示:如果與呈線性相關(guān),且線性回歸方程為,則()A. B. C. D.3.已知非零向量滿足,且,則與的夾角為A. B. C. D.4.已知等比數(shù)列中,,該數(shù)列的公比為A.2 B.-2 C. D.35.將函數(shù)y=sinx-πA.y=sin1C.y=sin16.經(jīng)過平面α外兩點(diǎn),作與α平行的平面,則這樣的平面可以作()A.1個(gè)或2個(gè)B.0個(gè)或1個(gè)C.1個(gè)D.0個(gè)7.在平面直角坐標(biāo)系中,已知四邊形是平行四邊形,,,則()A. B. C. D.8.從總數(shù)為的一批零件中抽取一個(gè)容量為的樣本,若每個(gè)零件被抽取的可能性為,則為()A. B. C. D.9.設(shè),函數(shù)在區(qū)間上是增函數(shù),則()A. B.C. D.10.在銳角中,角,,所對(duì)的邊分別為,,,邊上的高,且,則等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.兩圓,相切,則實(shí)數(shù)=______.12.已知,向量的夾角為,則的最大值為_____.13.從某小學(xué)隨機(jī)抽取100名同學(xué),將他們的身高(單位:厘米)數(shù)據(jù)繪制成頻率分布直方圖(如圖).若要從身高,,三組內(nèi)的學(xué)生中,用分層抽樣的方法抽取18人參加一項(xiàng)活動(dòng),則從身高在內(nèi)的學(xué)生中抽取的人數(shù)應(yīng)為________.14.在數(shù)列中,按此規(guī)律,是該數(shù)列的第______項(xiàng)15.已知向量,的夾角為°,,,則______.16.已知銳角、滿足,,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知曲線C:x2+y2+2x+4y+m=1.(1)當(dāng)m為何值時(shí),曲線C表示圓?(2)若直線l:y=x﹣m與圓C相切,求m的值.18.已知向量,,且.(1)求的值;(2)求的值.19.在一個(gè)盒子中裝有6支圓珠筆,其中3支一等品,2支二等品和1支三等品,從中任取3支.求(1)恰有1支一等品的概率;(2)恰有兩支一等品的概率;(3)沒有三等品的概率.20.已知△ABC內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且.(Ⅰ)求A;(Ⅱ)若,求△ABC面積的最大值.21.四棱錐中,,,底面,,直線與底面所成的角為,、分別是、的中點(diǎn).(1)求證:直線平面;(2)若,求證:直線平面;(3)求棱錐的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

本題首先可結(jié)合向量減法的三角形法則對(duì)已知條件中的進(jìn)行化簡(jiǎn),化簡(jiǎn)為然后化簡(jiǎn)并代入即可得出答案.【詳解】因?yàn)?,所以,所以,即,故選B.【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是平面向量的基本定理,考查向量減法的三角形法則,考查數(shù)形結(jié)合思想與化歸思想,是簡(jiǎn)單題.2、A【解析】

計(jì)算出、,再將點(diǎn)的坐標(biāo)代入回歸直線方程,可求出的值.【詳解】由表格中的數(shù)據(jù)可得,,由于回歸直線過樣本的中心點(diǎn),則有,解得,故選:A.【點(diǎn)睛】本題考查回歸直線方程中參數(shù)的計(jì)算,解題時(shí)要充分利用回歸直線過樣本的中心點(diǎn)這一結(jié)論,考查計(jì)算能力,屬于基礎(chǔ)題.3、B【解析】

本題主要考查利用平面向量數(shù)量積計(jì)算向量長(zhǎng)度、夾角與垂直問題,滲透了轉(zhuǎn)化與化歸、數(shù)學(xué)計(jì)算等數(shù)學(xué)素養(yǎng).先由得出向量的數(shù)量積與其模的關(guān)系,再利用向量夾角公式即可計(jì)算出向量夾角.【詳解】因?yàn)椋?0,所以,所以=,所以與的夾角為,故選B.【點(diǎn)睛】對(duì)向量夾角的計(jì)算,先計(jì)算出向量的數(shù)量積及各個(gè)向量的摸,在利用向量夾角公式求出夾角的余弦值,再求出夾角,注意向量夾角范圍為.4、B【解析】分析:根據(jù)等比數(shù)列通項(xiàng)公式求公比.詳解:因?yàn)椋赃xB.點(diǎn)睛:本題考查等比數(shù)列通項(xiàng)公式,考查基本求解能力.5、C【解析】

將函數(shù)y=sin(x-π3)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來的2倍(縱坐標(biāo)不變)得到y(tǒng)=sin(12x-π3),再向左平移π3個(gè)單位得到的解析式為y=sin(12(x+π3)-6、B【解析】若平面α外的兩點(diǎn)所確定的直線與平面α平行,則過該直線與平面α平行的平面有且只有一個(gè);若平面α外的兩點(diǎn)所確定的直線與平面α相交,則過該直線的平面與平面α平行的平面不存在;故選B.7、D【解析】因?yàn)樗倪呅问瞧叫兴倪呅?,所以,所以,故選D.考點(diǎn):1、平面向量的加法運(yùn)算;2、平面向量數(shù)量積的坐標(biāo)運(yùn)算.8、A【解析】

由樣本容量、總?cè)萘恳约皞€(gè)體入樣可能性三者之間的關(guān)系,列等式求出的值.【詳解】由題意可得,解得,故選A.【點(diǎn)睛】本題考查抽樣概念的理解,了解樣本容量、總體容量以及個(gè)體入樣可能性三者之間的關(guān)系是解題的關(guān)鍵,考查計(jì)算能力,屬于基礎(chǔ)題.9、C【解析】

首先比較自變量與的大小,然后利用單調(diào)性比較函數(shù)值與的大小.【詳解】因?yàn)?,函?shù)在區(qū)間上是增函數(shù),所以.故選C.【點(diǎn)睛】已知函數(shù)單調(diào)性比較函數(shù)值大小,可以借助自變量的大小來比較函數(shù)值的大小.10、A【解析】

在中得到,,在中得到,利用面積公式計(jì)算得到.【詳解】如圖所示:在中:,根據(jù)勾股定理得到在中:利用勾股定理得到,故故選A【點(diǎn)睛】本題考查了勾股定理,面積公式,意在考查學(xué)生解決問題的能力.二、填空題:本大題共6小題,每小題5分,共30分。11、0,±2【解析】

根據(jù)題意,由圓的標(biāo)準(zhǔn)方程分析兩圓的圓心與半徑,分兩圓外切與內(nèi)切兩種情況討論,求出a的值,綜合即可得答案.【詳解】根據(jù)題意:圓的圓心為(0,0),半徑為1,圓的圓心為(﹣4,a),半徑為5,若兩圓相切,分2種情況討論:當(dāng)兩圓外切時(shí),有(﹣4)2+a2=(1+5)2,解可得a=±2,當(dāng)兩圓內(nèi)切時(shí),有(﹣4)2+a2=(1﹣5)2,解可得a=0,綜合可得:實(shí)數(shù)a的值為0或±2;故答案為0或±2.【點(diǎn)睛】本題考查圓與圓的位置關(guān)系,關(guān)鍵是掌握?qǐng)A與圓的位置關(guān)系的判定方法.12、【解析】

將兩邊平方,化簡(jiǎn)后利用基本不等式求得的最大值.【詳解】將兩邊平方并化簡(jiǎn)得,由基本不等式得,故,即,即,所以的最大值為.【點(diǎn)睛】本小題主要考查平面向量模的運(yùn)算,考查利用基本不等式求最值,考查化歸與轉(zhuǎn)化的數(shù)學(xué)思想方法,屬于中檔題.13、3【解析】

先由頻率之和等于1得出的值,計(jì)算身高在,,的頻率之比,根據(jù)比例得出身高在內(nèi)的學(xué)生中抽取的人數(shù).【詳解】身高在,,的頻率之比為所以從身高在內(nèi)的學(xué)生中抽取的人數(shù)應(yīng)為故答案為:【點(diǎn)睛】本題主要考查了根據(jù)頻率分布直方圖求參數(shù)的值以及分層抽樣計(jì)算各層總數(shù),屬于中檔題.14、【解析】

分別求出,,,結(jié)果構(gòu)成等比數(shù)列,進(jìn)而推斷數(shù)列是首相為2,公比為2的等比數(shù)列,進(jìn)而求得數(shù)列的通項(xiàng)公式,再由求得答案.【詳解】,,,依此類推可得,,,即.,解得.故答案為:7.【點(diǎn)睛】本題考查利用數(shù)列的遞推關(guān)系求數(shù)列的通項(xiàng)公式,求解的關(guān)鍵在于推斷是等比數(shù)列,再用累加法求得數(shù)列的通項(xiàng)公式,考查邏輯推理能力和運(yùn)算求解能力.15、1【解析】

把向量,的夾角為60°,且,,代入平面向量的數(shù)量積公式,即可得到答案.【詳解】由向量,的夾角為°,且,,則.故答案為1【點(diǎn)睛】本題考查了平面向量數(shù)量積的坐標(biāo)表示,直接考查公式本身的直接應(yīng)用,屬于基礎(chǔ)題.16、.【解析】試題分析:由題意,所以.考點(diǎn):三角函數(shù)運(yùn)算.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)當(dāng)m<2時(shí),曲線C表示圓(2)m=±3【解析】解:(1)由C:x2+y2+2x+4y+m=1,得(x+1)2+(y+2)2=2﹣m,由2﹣m>1,得m<2.∴當(dāng)m<2時(shí),曲線C表示圓;(2)圓C的圓心坐標(biāo)為(﹣1,﹣2),半徑為.∵直線l:y=x﹣m與圓C相切,∴,解得:m=±3,滿足m<2.∴m=±3.【點(diǎn)評(píng)】本題考查圓的一般方程,考查了直線與圓位置關(guān)系的應(yīng)用,訓(xùn)練了點(diǎn)到直線的距離公式的應(yīng)用,是基礎(chǔ)題.18、(1);(2)【解析】

(1)由向量垂直的坐標(biāo)運(yùn)算可得,再求解即可;(2)利用三角函數(shù)誘導(dǎo)公式可得原式,再構(gòu)造齊次式求解即可.【詳解】解:(1)因?yàn)?,所以,因?yàn)?,,所以,即,?(2).【點(diǎn)睛】本題考查了向量垂直的坐標(biāo)運(yùn)算,重點(diǎn)考查了三角函數(shù)誘導(dǎo)公式及構(gòu)造齊次式求值,屬中檔題.19、(1);(2);(3).【解析】

(1)恰有一支一等品,從3支一等品中任取一支,從二、三等品種任取兩支利用分布乘法原理計(jì)算后除以基本事件總數(shù);(2)恰有兩枝一等品,從3支一等品中任取兩支,從二、三等品種任取一支利用分布乘法原理計(jì)算后除以基本事件總數(shù);(3)從5支非三等品中任取三支除以基本事件總數(shù).【詳解】(1)恰有一枝一等品的概率;(2)恰有兩枝一等品的概率;(3)沒有三等品的概率.【點(diǎn)睛】本題考查古典概型及其概率計(jì)算公式,考查邏輯思維能力和運(yùn)算能力,屬于??碱}.20、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)利用正弦定理,三角函數(shù)恒等變換,可得,結(jié)合范圍,可求的值.(Ⅱ)方法1:由余弦定理,基本不等式可得,利用三角形的面積公式即可求解;方法2:由正弦定理可得,,并將其代入可得,然后再化簡(jiǎn),根據(jù)正弦函數(shù)的圖象和性質(zhì)即可求得面積的最大值.【詳解】解:(I)因?yàn)?,由正弦定理可得:,所以所以,即,,所以,可得:,所以,所以,可得:(II)方法1:由余弦定理得:,得,所以當(dāng)且僅當(dāng)時(shí)取等號(hào),所以△ABC面積的最大值為方法2:因?yàn)?,所以,,所以,所以,?dāng)且僅當(dāng),即,當(dāng)時(shí)取等號(hào).所以△ABC面積的最大值為.【點(diǎn)睛】本題主要考查了正弦定理,三角函數(shù)恒等變換的應(yīng)用,余弦定理,基本不等式,三角形的面積公式,正弦函數(shù)的圖象和性質(zhì)在解三角形中的綜合應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于中檔題.21、(1)見解析(2)見解析(3)【解析】

(1)由中位線定理可得,,再根據(jù)平行公理可得,,即可根據(jù)線面

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論