陜西省西安市第六十六中學2024年數(shù)學高一下期末綜合測試模擬試題含解析_第1頁
陜西省西安市第六十六中學2024年數(shù)學高一下期末綜合測試模擬試題含解析_第2頁
陜西省西安市第六十六中學2024年數(shù)學高一下期末綜合測試模擬試題含解析_第3頁
陜西省西安市第六十六中學2024年數(shù)學高一下期末綜合測試模擬試題含解析_第4頁
陜西省西安市第六十六中學2024年數(shù)學高一下期末綜合測試模擬試題含解析_第5頁
已閱讀5頁,還剩8頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

陜西省西安市第六十六中學2024年數(shù)學高一下期末綜合測試模擬試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.一個多面體的三視圖如圖所示.設在其直觀圖中,M為AB的中點,則幾何體的體積為()A. B. C. D.2.某公司為激勵創(chuàng)新,計劃逐年加大研發(fā)獎金投入,若該公司年全年投入研發(fā)獎金萬元,在此基礎上,每年投入的研發(fā)獎金比上一年增長,則該公司全年投入的研發(fā)獎金開始超過萬元的年份是()(參考數(shù)據(jù):,,)A.年 B.年 C.年 D.年3.下列說法正確的是()A.小于的角是銳角 B.鈍角是第二象限的角C.第二象限的角大于第一象限的角 D.若角與角的終邊相同,則4.已知,則下列不等式成立的是()A. B. C. D.5.中,角所對的邊分別為,已知向量,,且共線,則的形狀是()A.等腰三角形 B.直角三角形C.等腰直角三角形 D.等腰三角形或直角三角形6.設向量,若,則實數(shù)的值為()A.1 B.2 C.3 D.47.函數(shù)的最大值為()A. B. C. D.8.已知角的終邊經(jīng)過點,則的值是()A. B. C. D.9.已知:,,若函數(shù)和有完全相同的對稱軸,則不等式的解集是A. B.C. D.10.若圓與圓外切,則()A.21 B.19 C.9 D.-11二、填空題:本大題共6小題,每小題5分,共30分。11.的值為__________.12.等比數(shù)列{an}中,a1<0,{an}是遞增數(shù)列,則滿足條件的q的取值范圍是______________.13.如圖,在水平放置的邊長為1的正方形中隨機撤1000粒豆子,有400粒落到心形陰影部分上,據(jù)此估計心形陰影部分的面積為_________.14.若過點作圓的切線,則直線的方程為_______________.15.已知向量,,且,則______.16.由于堅持經(jīng)濟改革,我國國民經(jīng)濟繼續(xù)保持了較穩(wěn)定的增長.某廠2019年的產(chǎn)值是100萬元,計劃每年產(chǎn)值都比上一年增加,從2019年到2022年的總產(chǎn)值為______萬元(精確到萬元).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如圖,為了測量河對岸、兩點的距離,觀察者找到一個點,從點可以觀察到點、;找到一個點,從點可以觀察到點、;找到一個點,從點可以觀察到點、.并測量得到以下數(shù)據(jù),,,,,米,米.求、兩點的距離.18.已知角終邊上一點,且,求的值.19.已知,是平面內(nèi)兩個不共線的非零向量,,,且,,三點共線.(1)求實數(shù)的值;(2)若,,求的坐標;(3)已知,在(2)的條件下,若,,,四點按逆時針順序構成平行四邊形,求點的坐標.20.如圖,已知圓:,點.(1)求經(jīng)過點且與圓相切的直線的方程;(2)過點的直線與圓相交于、兩點,為線段的中點,求線段長度的取值范圍.21.在城市舊城改造中,某小區(qū)為了升級居住環(huán)境,擬在小區(qū)的閑置地中規(guī)劃一個面積為的矩形區(qū)域(如圖所示),按規(guī)劃要求:在矩形內(nèi)的四周安排寬的綠化,綠化造價為200元/,中間區(qū)域地面硬化以方便后期放置各類健身器材,硬化造價為100元/.設矩形的長為.(1)設總造價(元)表示為長度的函數(shù);(2)當取何值時,總造價最低,并求出最低總造價.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

利用棱柱的體積減去兩個棱錐的體積,求解即可.【詳解】由題意可知幾何體C?MEF的體積:VADF?BCE?VF?AMCD?VE?MBC=.故選:D.【點睛】本題考查簡單空間圖形的三視圖及體積計算,根據(jù)三視圖求得幾何體的棱長及關系,利用幾何體體積公式即可求解,考查運算能力和空間想象能力,屬于基礎題.2、B【解析】試題分析:設從2015年開始第年該公司全年投入的研發(fā)資金開始超過200萬元,由已知得,兩邊取常用對數(shù)得,故從2019年開始,該公司全年投入的研發(fā)資金開始超過200萬元,故選B.【考點】增長率問題,常用對數(shù)的應用【名師點睛】本題考查等比數(shù)列的實際應用.在實際問題中平均增長率問題可以看作等比數(shù)列的應用,解題時要注意把哪個數(shù)作為數(shù)列的首項,然后根據(jù)等比數(shù)列的通項公式寫出通項,列出不等式或方程就可求解.3、B【解析】

可通過舉例的方式驗證選項的對錯.【詳解】A:負角不是銳角,比如“”的角,故錯誤;B:鈍角范圍是“”,是第二象限的角,故正確;C:第二象限角取“”,第一象限角取“”,故錯誤;D:當角與角的終邊相同,則.故選B.【點睛】本題考查任意角的概念,難度較易.4、B【解析】

利用不等式的基本性質(zhì)即可得出結果.【詳解】因為,所以,所以,故選B【點睛】本題主要考查不等式的基本性質(zhì),屬于基礎題型.5、D【解析】

由向量共線的坐標表示得一等式,然后由正弦定理化邊為角,利用誘導公式得展開后代入原式化簡得,分類討論得解.【詳解】∵共線,∴,即,,,整理得,所以或,或或(舍去).∴三角形為直角三角形或等腰三角形.故選:D.【點睛】本題考查三角形形狀的判斷,考查向量共線的坐標表示,考查正弦定理,兩角和的正弦公式,考查三角函數(shù)性質(zhì).解題時不能隨便約分漏解.6、B【解析】

首先求出的坐標,再根據(jù)平面向量共線定理解答.【詳解】解:,因為,所以,解得.故選:【點睛】本題考查平面向量共線定理的應用,屬于基礎題.7、D【解析】

函數(shù)可以化為,設,由,則,即轉化為求二次函數(shù)在上的最大值.【詳解】由設,由,則.即求二次函數(shù)在上的最大值所以當,即時,函數(shù)取得最大值.故選:D【點睛】本題考查的二次型函數(shù)的最值,屬于中檔題.8、D【解析】

首先計算出,根據(jù)三角函數(shù)定義可求得正弦值和余弦值,從而得到結果.【詳解】由三角函數(shù)定義知:,,則:本題正確選項:【點睛】本題考查任意角三角函數(shù)的求解問題,屬于基礎題.9、B【解析】

,所以因此,選B.10、C【解析】試題分析:因為,所以且圓的圓心為,半徑為,根據(jù)圓與圓外切的判定(圓心距離等于半徑和)可得,故選C.考點:圓與圓之間的外切關系與判斷二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

直接利用誘導公式化簡求值.【詳解】,故答案為:.【點睛】本題考查誘導公式的應用,屬于基礎題.12、【解析】試題分析:由題意可得,∴,解得0<q<1考點:等比數(shù)列的性質(zhì)13、0.4【解析】

根據(jù)幾何概型的計算,反求陰影部分的面積即可.【詳解】設陰影部分的面積為,根據(jù)幾何概型的概率計算公式:,解得.故答案為:.【點睛】本題考查幾何概型的概率計算公式,屬基礎題.14、或【解析】

討論斜率不存在時是否有切線,當斜率存在時,運用點到直線距離等于半徑求出斜率【詳解】圓即①當斜率不存在時,為圓的切線②當斜率存在時,設切線方程為即,解得此時切線方程為,即綜上所述,則直線的方程為或【點睛】本題主要考查了過圓外一點求切線方程,在求解過程中先討論斜率不存在的情況,然后討論斜率存在的情況,利用點到直線距離公式求出結果,較為基礎。15、【解析】

根據(jù)的坐標表示,即可得出,解出即可.【詳解】,,.【點睛】本題主要考查平行向量的坐標關系應用.16、464【解析】

根據(jù)等比數(shù)列求和公式求解【詳解】由題意得從2019年到2022年各年產(chǎn)值構成以100為首項,1.1為公比的等比數(shù)列,其和為【點睛】本題考查等比數(shù)列應用以及等比數(shù)列求和公式,考查基本分析求解能力,屬基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、米【解析】

在中,求出,利用正弦定理求出,然后在中利用銳角三角函數(shù)定義求出,最后在中,利用余弦定理求出.【詳解】由題意可知,在中,,由正弦定理得,所以米,在中,米,在中,由余弦定理得,所以,米.【點睛】本題考查利用正弦、余弦定理解三角形應用題,要將實際問題轉化為三角形的問題,并結合已知元素類型選擇正弦、余弦定理解三角形,考查分析問題和解決問題的能力,屬于中等題.18、見解析【解析】

根據(jù)三角函數(shù)定義列方程解得,再根據(jù)三角函數(shù)定義求的值.【詳解】,(1)當時,.(2)當時,,解得.當時,;當時,.綜上當時,;當時,;當時,.【點睛】本題考查三角函數(shù)定義,考查基本分析求解能力,屬基礎題.19、(1);(2);(3).【解析】

(1)根據(jù),,三點共線,列出向量與共線的表達式,然后根據(jù)坐標求解即可;(2)根據(jù),列坐標即可求解;(3)根據(jù)平行四邊形可以推出對邊的向量相等,根據(jù)向量相等代入坐標求解即可求出點的坐標.【詳解】(1),∵,,三點共線,∴存在實數(shù),使得,即,得,∵,是平面內(nèi)兩個不共線的非零向量,∴,解得,;(2);(3)∵,,,四點按逆時針順序構成平行四邊形,∴,設,則,∵,∴,解得,即點的坐標為.【點睛】本題主要考查了平面向量共線,平面向量的線性運算,平面向量的相等,屬于一般題.20、(1)或;(2).【解析】試題分析:(1)設直線方程點斜式,再根據(jù)圓心到直線距離等于半徑求斜率;最后驗證斜率不存在情況是否滿足題意(2)先求點的軌跡:為圓,再根據(jù)點到圓上點距離關系確定最值試題解析:(1)當過點直線的斜率不存在時,其方程為,滿足條件.當切線的斜率存在時,設:,即,圓心到切線的距離等于半徑3,,解得.切線方程為,即故所求直線的方程為或.(2)由題意可得,點的軌跡是以為直徑的圓,記為圓.則圓的方程為.從而,所以線段長度的最大值為,最小值為,所以線段長度

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論