2024屆天津市河西區(qū)實(shí)驗(yàn)中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第1頁(yè)
2024屆天津市河西區(qū)實(shí)驗(yàn)中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第2頁(yè)
2024屆天津市河西區(qū)實(shí)驗(yàn)中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第3頁(yè)
2024屆天津市河西區(qū)實(shí)驗(yàn)中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第4頁(yè)
2024屆天津市河西區(qū)實(shí)驗(yàn)中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆天津市河西區(qū)實(shí)驗(yàn)中學(xué)高一數(shù)學(xué)第二學(xué)期期末檢測(cè)試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.記為等差數(shù)列的前n項(xiàng)和.若,,則等差數(shù)列的公差為()A.1 B.2 C.4 D.82.在中,若則等于()A. B. C. D.3.已知點(diǎn)是直線上一動(dòng)點(diǎn)、是圓的兩條切線,、是切點(diǎn),若四邊形的最小面積是,則的值為()A. B. C. D.4.函數(shù)的部分圖象如圖中實(shí)線所示,圖中圓與的圖象交于兩點(diǎn),且在軸上,則下列說法中正確的是A.函數(shù)的最小正周期是B.函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱C.函數(shù)在單調(diào)遞增D.函數(shù)的圖象向右平移后關(guān)于原點(diǎn)成中心對(duì)稱5.若一個(gè)正四棱錐的側(cè)棱和底面邊長(zhǎng)相等,則該正四棱錐的側(cè)棱和底面所成的角為()A.30° B.45° C.60° D.90°6.等比數(shù)列的前n項(xiàng)和為,且,,成等差數(shù)列.若,則()A.15 B.7 C.8 D.167.如下圖是一個(gè)正方體的平面展開圖,在這個(gè)正方體中①②與成角③與為異面直線④以上四個(gè)命題中,正確的序號(hào)是()A.①②③ B.②④ C.③④ D.②③④8.圓x-12+y-3A.1 B.2 C.2 D.39.閱讀如圖所示的程序框圖,運(yùn)行相應(yīng)的程序,輸出的值等于()A.-3 B.-10 C.0 D.-210.在中,角A,B,C所對(duì)的邊分別為a,b,c,若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最大值為______.12.在某校舉行的歌手大賽中,7位評(píng)委為某同學(xué)打出的分?jǐn)?shù)如莖葉圖所示,去掉一個(gè)最高分和一個(gè)最低分后,所剩數(shù)據(jù)的方差為______.13.設(shè)數(shù)列滿足,,且,用表示不超過的最大整數(shù),如,,則的值用表示為__________.14.若a、b、c正數(shù)依次成等差數(shù)列,則的最小值為_______.15.已知數(shù)列滿足:,則___________.16.函數(shù),的圖象與直線y=k有且僅有兩個(gè)不同的交點(diǎn),則k的取值范圍是_____.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知是公差不為0的等差數(shù)列,,,成等比數(shù)列,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,數(shù)列的前項(xiàng)和為,證明:.18.共享單車是指由企業(yè)在校園、公交站點(diǎn)、商業(yè)區(qū)、公共服務(wù)區(qū)等場(chǎng)所提供的自行車單車共享服務(wù),由于其依托“互聯(lián)網(wǎng)+”,符合“低碳出行”的理念,已越來越多地引起了人們的關(guān)注.某部門為了對(duì)該城市共享單車加強(qiáng)監(jiān)管,隨機(jī)選取了50人就該城市共享單車的推行情況進(jìn)行問卷調(diào)査,并將問卷中的這50人根據(jù)其滿意度評(píng)分值(百分制)按照分成5組,請(qǐng)根據(jù)下面尚未完成并有局部污損的頻率分布表和頻率分布直方圖(如圖所示)解決下列問題:頻率分布表組別分組頻數(shù)頻率第1組80.16第2組▆第3組200.40第4組▆0.08第5組2合計(jì)▆▆(1)求的值;(2)若在滿意度評(píng)分值為的人中隨機(jī)抽取2人進(jìn)行座談,求所抽取的2人中至少一人來自第5組的概率.19.在△ABC中,a=3,b?c=2,cosB=.(Ⅰ)求b,c的值;(Ⅱ)求sin(B–C)的值.20.某網(wǎng)站推出了關(guān)于掃黑除惡情況的調(diào)查,調(diào)查數(shù)據(jù)表明,掃黑除惡仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注掃黑除惡的人群中隨機(jī)選出人,并將這人按年齡分組:第組,第組,第組,第組,第組,得到的頻率分布直方圖如圖所示.(1)求出的值;(2)求這人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位).21.已知函數(shù).(1)求函數(shù)的單調(diào)遞增區(qū)間;(2)當(dāng)時(shí),求函數(shù)的最大值和最小值.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

利用等差數(shù)列的前n項(xiàng)和公式、通項(xiàng)公式列出方程組,能求出等差數(shù)列{an}的公差.【詳解】∵為等差數(shù)列的前n項(xiàng)和,,,∴,解得d=2,a1=5,∴等差數(shù)列的公差為2.故選:B.【點(diǎn)睛】本題考查等差數(shù)列的公差,此類問題根據(jù)題意設(shè)公差和首項(xiàng)為d、a1,列出方程組解出即可,屬于基礎(chǔ)題.2、D【解析】

由正弦定理,求得,再由,且,即可求解,得到答案.【詳解】由題意,在中,由正弦定理可得,即,又由,且,所以或,故選D.【點(diǎn)睛】本題主要考查了正弦定理的應(yīng)用,其中解答中熟記三角形的正弦定理,準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.3、D【解析】

作出圖形,可知,由四邊形的最小面積是,可知此時(shí)取最小值,由勾股定理可知的最小值為,即圓心到直線的距離為,結(jié)合點(diǎn)到直線的距離公式可求出的值.【詳解】如下圖所示,由切線長(zhǎng)定理可得,又,,且,,所以,四邊形的面積為面積的兩倍,圓的標(biāo)準(zhǔn)方程為,圓心為,半徑為,四邊形的最小面積是,所以,面積的最小值為,又,,由勾股定理,當(dāng)直線與直線垂直時(shí),取最小值,即,整理得,,解得.故選:D.【點(diǎn)睛】本題考查由四邊形面積的最值求參數(shù)的值,涉及直線與圓的位置關(guān)系的應(yīng)用,解題的關(guān)鍵就是確定動(dòng)點(diǎn)的位置,考查分析問題和解決問題的能力,屬于中等題.4、B【解析】

根據(jù)函數(shù)的圖象,求得函數(shù),再根據(jù)正弦型函數(shù)的性質(zhì),即可求解,得到答案.【詳解】根據(jù)給定函數(shù)的圖象,可得點(diǎn)的橫坐標(biāo)為,所以,解得,所以的最小正周期,不妨令,,由周期,所以,又,所以,所以,令,解得,當(dāng)時(shí),,即函數(shù)的一個(gè)對(duì)稱中心為,即函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱.故選B.【點(diǎn)睛】本題主要考查了由三角函數(shù)的圖象求解函數(shù)的解析式,以及三角函數(shù)的圖象與性質(zhì),其中解答中根據(jù)函數(shù)的圖象求得三角函數(shù)的解析式,再根據(jù)三角函數(shù)的圖象與性質(zhì)求解是解答的關(guān)鍵,著重考查了數(shù)形結(jié)合思想,以及運(yùn)算與求解能力,屬于基礎(chǔ)題.5、B【解析】

正四棱錐,連接底面對(duì)角線,在中,為側(cè)棱與地面所成角,通過邊的關(guān)系得到答案.【詳解】正四棱錐,連接底面對(duì)角線,,易知為等腰直角三角形.中點(diǎn)為,又正四棱錐知:底面即為所求角為,答案為B【點(diǎn)睛】本題考查了線面夾角的計(jì)算,意在考察學(xué)生的計(jì)算能力和空間想象力.6、B【解析】

通過,,成等差數(shù)列,計(jì)算出,再計(jì)算【詳解】等比數(shù)列的前n項(xiàng)和為,且,,成等差數(shù)列即故答案選B【點(diǎn)睛】本題考查了等比數(shù)列通項(xiàng)公式,等差中項(xiàng),前N項(xiàng)和,屬于??碱}型.7、D【解析】由已知中正方體的平面展開圖,得到正方體的直觀圖如上圖所示:

由正方體的幾何特征可得:①不平行,不正確;

②AN∥BM,所以,CN與BM所成的角就是∠ANC=60°角,正確;③與不平行、不相交,故異面直線與為異面直線,正確;

④易證,故,正確;故選D.8、C【解析】

先計(jì)算圓心到y(tǒng)軸的距離,再利用勾股定理得到弦長(zhǎng).【詳解】x-12+y-32=2圓心到y(tǒng)軸的距離d=1弦長(zhǎng)l=2r故答案選C【點(diǎn)睛】本題考查了圓的弦長(zhǎng)公式,意在考查學(xué)生的計(jì)算能力.9、A【解析】

第一次循環(huán),;第二次循環(huán),;第三次循環(huán),,當(dāng)時(shí),不成立,循環(huán)結(jié)束,此時(shí),故選A.10、B【解析】

由題意和余弦定理可得,再由余弦定理可得,可得角的值.【詳解】在中,,由余弦定理可得,,,又,.故選:.【點(diǎn)睛】本題考查利用余弦定理解三角形,考查了轉(zhuǎn)化思想,屬基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

設(shè),,,則,,可得,再根據(jù)正弦函數(shù)的定義域和值域,求得函數(shù)的最值.【詳解】解:函數(shù),設(shè),,則,,,,故當(dāng),即時(shí),函數(shù),故故答案為:;【點(diǎn)睛】本題主要考查求函數(shù)的值域,正弦函數(shù)的定義域和值域,體現(xiàn)了轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.12、2【解析】

去掉分?jǐn)?shù)后剩余數(shù)據(jù)為22,23,24,25,26,先計(jì)算平均值,再計(jì)算方差.【詳解】去掉分?jǐn)?shù)后剩余數(shù)據(jù)為22,23,24,25,26平均值為:方差為:故答案為2【點(diǎn)睛】本題考查了方差的計(jì)算,意在考查學(xué)生的計(jì)算能力.13、【解析】

由題設(shè)可得知該函數(shù)的最小正周期是,令,則由等差數(shù)列的定義可知數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,即,由此可得,將以上個(gè)等式兩邊相加可得,即,所以,故,應(yīng)填答案.點(diǎn)睛:解答本題的關(guān)鍵是借助題設(shè)中提供的數(shù)列遞推關(guān)系式,先求出數(shù)列的通項(xiàng)公式,然后再運(yùn)用列項(xiàng)相消法求出,最后借助題設(shè)中提供的新信息,求出使得問題獲解.14、1【解析】

由正數(shù)a、b、c依次成等差數(shù)列,則,則,再結(jié)合基本不等式求最值即可.【詳解】解:由正數(shù)a、b、c依次成等差數(shù)列,則,則,當(dāng)且僅當(dāng),即時(shí)取等號(hào),故答案為:1.【點(diǎn)睛】本題考查了等差中項(xiàng)的運(yùn)算,重點(diǎn)考查了基本不等式的應(yīng)用,屬基礎(chǔ)題.15、0【解析】

先由條件得,然后【詳解】因?yàn)樗砸驗(yàn)椋宜?,即故答案為?【點(diǎn)睛】本題考查的是數(shù)列的基礎(chǔ)知識(shí),較簡(jiǎn)單.16、【解析】

作出其圖像,可只有兩個(gè)交點(diǎn)時(shí)k的范圍為.故答案為三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)證明見解析【解析】

(1)由題意列式求得數(shù)列的首項(xiàng)和公差,然后代入等差數(shù)列的通項(xiàng)公式得答案.

(2)求出數(shù)列的通項(xiàng),利用裂項(xiàng)相消法求出數(shù)列的前項(xiàng)和得答案.【詳解】(1)差數(shù)列中,,成等比數(shù)列有:即,得所以又,即,.所以.(2)所以.所以所以【點(diǎn)睛】本題考查了等差數(shù)列的通項(xiàng)公式,等比數(shù)列的性質(zhì),裂項(xiàng)相消法求數(shù)列的前項(xiàng)和,是中檔題.18、(1);(2).【解析】

(1)根據(jù)頻率分布表可得b.先求得內(nèi)的頻數(shù),即可由總數(shù)減去其余部分求得.結(jié)合頻率分布直方圖,即可求得的值.(2)根據(jù)頻率分布表可知在內(nèi)有4人,在有2人.列舉出從這6人中選取2人的所有可能,由古典概型概率計(jì)算公式即可求解.【詳解】(1)由頻率分布表可得內(nèi)的頻數(shù)為,∴∴內(nèi)的頻率為∴∵內(nèi)的頻率為0.04∴(2)由題意可知,第4組共有4人,第5組共有2人,設(shè)第4組的4人分別為、、、;第5組的2人分別為、從中任取2人的所有基本事件為:,,,,,,,,,,,,,,共15個(gè).至少一人來自第5組的基本事件有:,,,,,,,共9個(gè).所以.∴所抽取2人中至少一人來自第5組的概率為.【點(diǎn)睛】本題考查了頻率分布表及頻率分布直方圖的應(yīng)用,列舉法表示事件的可能,古典概型概率計(jì)算方法,屬于基礎(chǔ)題.19、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)由題意列出關(guān)于a,b,c的方程組,求解方程組即可確定b,c的值;(Ⅱ)由題意結(jié)合正弦定理和兩角和差正余弦公式可得的值.【詳解】(Ⅰ)由題意可得:,解得:.(Ⅱ)由同角三角函數(shù)基本關(guān)系可得:,結(jié)合正弦定理可得:,很明顯角C為銳角,故,故.【點(diǎn)睛】本題主要考查余弦定理、正弦定理的應(yīng)用,兩角和差正余弦公式的應(yīng)用等知識(shí),意在考查學(xué)生的轉(zhuǎn)化能力和計(jì)算求解能力.20、(1)0.035(2)平均數(shù)為:41.5歲中位數(shù)為:42.1歲【解析】

(1)根據(jù)頻率之和為1,結(jié)合題中條件,直接列出式子計(jì)算,即可得出結(jié)果;(2)根據(jù)每組的中間值乘該組的頻率再求和,即可得出平均數(shù);根據(jù)中位數(shù)兩邊的頻率之和相等,即可求出中位數(shù).【詳解】(1)由題意可得:,解得;(2)由題中數(shù)據(jù)可得:歲,設(shè)中位數(shù)為,則,∴歲.【點(diǎn)睛】本題主要考查完

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論