版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆河北省唐山市唐山第一中學高一下數(shù)學期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.在中,已知,那么一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.正三角形2.已知集合,,則()A. B. C. D.3.若某扇形的弧長為,圓心角為,則該扇形的半徑是()A. B. C. D.4.如圖的折線圖為某小區(qū)小型超市今年一月份到五月份的營業(yè)額和支出數(shù)據(jù)(利潤=營業(yè)額-支出),根據(jù)折線圖,下列說法中正確的是()A.該超市這五個月中,利潤隨營業(yè)額的增長在增長B.該超市這五個月中,利潤基本保持不變C.該超市這五個月中,三月份的利潤最高D.該超市這五個月中的營業(yè)額和支出呈正相關5.圓C:x2+yA.2 B.3 C.1 D.26.若,且,則是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角7.下列命題正確的是()A.有兩個面平行,其余各面都是四邊形的幾何體叫棱柱.B.有兩個面平行,其余各面都是平行四邊形的幾何體叫棱柱.C.有兩個面平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行的幾何體叫棱柱.D.用一個平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺.8.角的終邊經(jīng)過點且,則的值為()A.-3 B.3 C.±3 D.59.已知,則的值域為()A. B. C. D.10.在中,是上一點,且,則()A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若正實數(shù)滿足,則的最大值為__________.12.直棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點,BC=CA=CC1,則BM與AN所成的角的余弦值為.13.已知的圓心角所對的弧長等于,則該圓的半徑為______.14.設函數(shù)(是常數(shù),).若在區(qū)間上具有單調性,且,則的最小正周期為_________.15.已知數(shù)列{an}的前n項和Sn=2n-3,則數(shù)列{an}的通項公式為________.16.設是等差數(shù)列的前項和,若,則___________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知函數(shù),且,.(1)求該函數(shù)的最小正周期及對稱中心坐標;(2)若方程的根為,且,求的值.18.遇龍塔建于明代萬歷年間,簡體磚石結構,屹立于永州市城北瀟水東岸,為湖南省重點文物保護單位之一.游客乘船進行觀光,到達瀟水河河面的處時測得塔頂在北偏東45°的方向上,然后向正北方向行駛后到達處,測得此塔頂在南偏東的方向上,仰角為,且,若塔底與河面在同一水平面上,求此塔的高度.19.如圖,四棱錐中,,平面平面,,為的中點.(1)求證://平面;(2)求點到面的距離(3)求二面角平面角的正弦值20.在中,,點D在邊AB上,,且.(1)若的面積為,求CD;(2)設,若,求證:.21.已知向量,,.(1)求(2)若與垂直,求實數(shù)的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
先化簡sinAcosB=sinC=,即得三角形形狀.【詳解】由sinAcosB=sinC得所以sinBcosA=0,因為A,B∈(0,π),所以sinB>0,所以cosA=0,所以A=,所以三角形是直角三角形.故答案為A【點睛】本題主要考查三角恒等變換和三角函數(shù)的圖像性質,意在考查學生對這些知識的掌握水平和分析推理能力.2、A【解析】
首先求得集合,根據(jù)交集定義求得結果.【詳解】本題正確選項:【點睛】本題考查集合運算中的交集運算,屬于基礎題.3、D【解析】
由扇形的弧長公式列方程得解.【詳解】設扇形的半徑是,由扇形的弧長公式得:,解得:故選D【點睛】本題主要考查了扇形的弧長公式,考查了方程思想,屬于基礎題.4、D【解析】
根據(jù)折線圖,分析出超市五個月中利潤的情況以及營業(yè)額和支出的相關性.【詳解】對于A選項,五個月的利潤依次為:,其中四月比三月是下降的,故A選項錯誤.對于B選項,五月的月份是一月和四月的兩倍,說明利潤有比較大的波動,故B選項錯誤.對于C選項,五個月的利潤依次為:,所以五月的利潤最高,故C選項錯誤.對于D選項,根據(jù)圖像可知,超市這五個月中的營業(yè)額和支出呈正相關,故D選項正確.故選:D【點睛】本小題主要考查折線圖的分析與理解,屬于基礎題.5、D【解析】
由點到直線距離公式,求出圓心到直線y=x的距離d,再由弦長=2r【詳解】因為圓C:x2+y2-2x=0所以圓心(1,0)到直線y=x的距離為d=1-0因此,弦長=2r故選D【點睛】本題主要考查求圓被直線所截弦長問題,常用幾何法處理,屬于??碱}型.6、C【解析】,則的終邊在三、四象限;則的終邊在三、一象限,,,同時滿足,則的終邊在三象限.7、C【解析】試題分析:有兩個面平行,其余各面都是四邊形的幾何體,A錯;有兩個面平行,其余各面都是平行四邊形的幾何體如圖所示,B錯;用一個平行于底面的平面去截棱錐,底面與截面之間的部分組成的幾何體叫棱臺,D錯;由棱柱的定義,C正確;考點:1、棱柱的概念;2、棱臺的概念.8、B【解析】
根據(jù)三角函數(shù)的定義建立方程關系即可.【詳解】因為角的終邊經(jīng)過點且,所以則解得【點睛】本題主要考查三角函數(shù)的定義的應用,應注意求出的b為正值.9、C【解析】
由已知條件,先求出函數(shù)的周期,由于,即可求出值域.【詳解】因為,所以,又因為,所以當時,;當時,;當時,,所以的值域為.故選:C.【點睛】本題考查三角函數(shù)的值域,利用了正弦函數(shù)的周期性.10、C【解析】
利用平面向量的三角形法則和共線定理,即可得到結果.【詳解】因為是上一點,且,則.故選:C.【點睛】本題考查了平面向量的線性運算和共線定理的應用,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
可利用基本不等式求的最大值.【詳解】因為都是正數(shù),由基本不等式有,所以即,當且僅當時等號成立,故的最大值為.【點睛】應用基本不等式求最值時,需遵循“一正二定三相等”,如果原代數(shù)式中沒有積為定值或和為定值,則需要對給定的代數(shù)變形以產(chǎn)生和為定值或積為定值的局部結構.求最值時要關注取等條件的驗證.12、【解析】試題分析:畫出圖形,找出BM與AN所成角的平面角,利用解三角形求出BM與AN所成角的余弦值.解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點,如圖:BC的中點為O,連結ON,MN,OB,∴MNOB,∴MN0B是平行四邊形,∴BM與AN所成角就是∠ANO,∵BC=CA=CC1,設BC=CA=CC1=2,∴CO=1,AO=,AN=,MB==,在△ANO中,由余弦定理得:cos∠ANO===.故答案為.考點:異面直線及其所成的角.13、【解析】
先將角度化為弧度,再根據(jù)弧長公式求解.【詳解】解:圓心角,弧長為,,即該圓的半徑長.故答案為:.【點睛】本題考查了角度和弧度的互化以及弧長公式的應用問題,屬于基礎題.14、【解析】
由在區(qū)間上具有單調性,且知,函數(shù)的對稱中心為,由知函數(shù)的對稱軸為直線,設函數(shù)的最小正周期為,所以,,即,所以,解得,故答案為.考點:函數(shù)的對稱性、周期性,屬于中檔題.15、【解析】
利用來求的通項.【詳解】,化簡得到,填.【點睛】一般地,如果知道的前項和,那么我們可利用求其通項,注意驗證時,(與有關的解析式)的值是否為,如果是,則,如果不是,則用分段函數(shù)表示.16、1.【解析】
由已知結合等差數(shù)列的性質求得,代入等差數(shù)列的前項和得答案.【詳解】解:在等差數(shù)列中,由,得,,則,故答案為:1.【點睛】本題主要考查等差數(shù)列的通項公式,考查等差數(shù)列的性質,考查了等差數(shù)列前項和的求法,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)最小正周期為.對稱中心坐標為;(2)-1【解析】
(1)由題意兩未知數(shù)列兩方程即可求出、的值,再進行三角變換,可得的解析式,再利用正弦函數(shù)的周期公式、圖象的對稱性,即可得出結論.(2)先由條件求得的值,可得的值.【詳解】(1)由,得:,解得:,,,即函數(shù)的最小正周期為.由得:函數(shù)的對稱中心坐標為;(2)由題意得:,即,或,則或,由知:,.【點睛】本題主要考查三角恒等變換,正弦函數(shù)的周期性、圖象的對稱性,以及三角函數(shù)求值.18、【解析】
根據(jù)正弦定理求得,然后在直角三角形中求得,即可得到答案.【詳解】由題意,在中,,故又,故由正弦定理得:,解得,因為,所以,所以.【點睛】本題主要考查了解三角形的實際應用問題,其中解答中熟練應用正弦定理和直角三角形的性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.19、(1)見詳解;(2);(3)【解析】
(1)通過取中點,利用中位線定理可得四變形為平行四邊形,然后利用線面平行的判定定理,可得結果.(2)根據(jù),可得平面,可得結果.(3)作,作,可得二面角平面角為,然后計算,可得結果.【詳解】(1)取中點,連接,如圖由為的中點,所以//且又,且,所以//且,故//且,所以四變形為平行四邊形,故//又平面,平面所以//平面(2)由,平面平面平面,平面平面所以平面,又平面所以,由,所以為正三角形,所以則平面所以平面,且所以點到面的距離即(3)作交于點,作交于點,連接由平面平面,平面平面平面平面,所以平面,平面,所以,又平面,所以平面又平面,所以所以二面角平面角為,又為等腰直角三角形所以,所以所以又二面角平面角為故所以二面角平面角的正弦值為【點睛】本題考查了線面平行的判定定理,還考查了點面距和面面角的求法,第(3)中難點在于找到二面角的平面角,掌握定義以及綜合線面,面面的位置關系,細心計算,屬中檔題.20、(1)(2)證明見解析【解析】
(1)直接利用三角形的面積公式求得,再由余弦定理列方程求出結果;(2)兩次利用正弦定理,結合兩角差的正弦公式、二倍角的正弦公式進行恒等變換求出結果.【詳解】(1)因為,即,又因為,,所以.在△中,由余弦定理得,即,解得.(2)在△中,,因為,則,又,由正弦定理,有,所以.在△中,,由正弦定理得,,即,化簡得展開并整理得【點睛】以三角形為載體,三角恒等變換為手段,正弦定理、余弦定理為工具,對三角函
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024洗車店合伙協(xié)議書范本
- 嚴格規(guī)范:2024版企業(yè)協(xié)議印章及證件使用條例
- 2025年度充電樁充電站用戶服務協(xié)議3篇
- 2 不一樣的你我他 說課稿-2023-2024學年道德與法治三年級下冊統(tǒng)編版
- 2024無房產(chǎn)證老舊小區(qū)房屋買賣合同規(guī)范版3篇
- 職業(yè)學院教育教學資助項目開題報告
- 福建省南平市五夫中學高一語文月考試題含解析
- 福建省南平市外屯中學2020-2021學年高三英語下學期期末試題含解析
- 福建省南平市松溪縣第二中學高一英語上學期期末試卷含解析
- 個人向金融機構借款合同范本(2024版)3篇
- 學校2025年寒假特色實踐作業(yè)綜合實踐暨跨學科作業(yè)設計活動方案
- 2024數(shù)據(jù)資源采購及運營管理合同3篇
- 人教版小學數(shù)學一年級上冊20以內(nèi)加減混合口算練習題全套
- 兒童青少年行為和情緒障礙的護理
- 《業(yè)務員銷售技巧》課件
- 《汽車涂裝》2024-2025學年第一學期工學一體化課程教學進度計劃表
- 自升式塔式起重機安裝與拆卸施工方案
- 2024年物流運輸公司全年安全生產(chǎn)工作計劃例文(4篇)
- 二零二四年度軟件開發(fā)合同:凈水器智能控制系統(tǒng)定制開發(fā)協(xié)議3篇
- 糖尿病肌少癥
- 2025年全國普通話考試題庫
評論
0/150
提交評論