2023-2024學(xué)年江蘇省南通市如東中學(xué)、栟茶中學(xué)數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第1頁
2023-2024學(xué)年江蘇省南通市如東中學(xué)、栟茶中學(xué)數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第2頁
2023-2024學(xué)年江蘇省南通市如東中學(xué)、栟茶中學(xué)數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第3頁
2023-2024學(xué)年江蘇省南通市如東中學(xué)、栟茶中學(xué)數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第4頁
2023-2024學(xué)年江蘇省南通市如東中學(xué)、栟茶中學(xué)數(shù)學(xué)高一下期末監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年江蘇省南通市如東中學(xué)、栟茶中學(xué)數(shù)學(xué)高一下期末監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知點均在球上,,若三棱錐體積的最大值為,則球的體積為A. B. C.32 D.2.已知向量,,,若,則()A.1 B.2 C.3 D.43.?dāng)?shù)列{an}的通項公式是an=(n+2),那么在此數(shù)列中()A.a(chǎn)7=a8最大 B.a(chǎn)8=a9最大C.有唯一項a8最大 D.有唯一項a7最大4.若,均為銳角,且,,則等于()A. B. C. D.5.在直角梯形中,,,,,,則梯形繞著旋轉(zhuǎn)而成的幾何體的體積為()A. B. C. D.6.若直線與圓相切,則()A. B. C. D.7.某市舉行“精英杯”數(shù)學(xué)挑戰(zhàn)賽,分初賽和復(fù)賽兩個階段進(jìn)行,規(guī)定:初賽成績大于90分的具有復(fù)賽資格,某校所有學(xué)生的成績均在區(qū)間內(nèi),其頻率分布直方圖如圖所示,該校有130名學(xué)生獲得了復(fù)賽資格,則該校參加初賽的人數(shù)約為()A.200 B.400 C.2000 D.40008.已知的定義域為,若對于,,,,,分別為某個三角形的三邊長,則稱為“三角形函數(shù)”,下例四個函數(shù)為“三角形函數(shù)”的是()A.; B.;C.; D.9.如圖,在中,,點在邊上,且,則等于()A. B. C. D.10.若直線與圓交于兩點,關(guān)于直線對稱,則實數(shù)的值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若,則______.12.設(shè)變量滿足條件,則的最小值為___________13.已知雙曲線:的右頂點為,以為圓心,為半徑作圓,圓與雙曲線的一條漸近線于交、兩點,若,則的離心率為__________.14.已知一組數(shù)據(jù)6,7,8,8,9,10,則該組數(shù)據(jù)的方差是____.15.等比數(shù)列的首項為,公比為,記,則數(shù)列的最大項是第___________項.16.觀察下列等式:(1);(2);(3);(4),……請你根據(jù)給定等式的共同特征,并接著寫出一個具有這個共同特征的等式(要求與已知等式不重復(fù)),這個等式可以是__________________.(答案不唯一)三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.?dāng)?shù)列中,,.(1)求證:數(shù)列為等差數(shù)列,求數(shù)列的通項公式;(2)若數(shù)列的前項和為,求證:.18.平面四邊形中,.(1)若,求;(2)設(shè),若,求面積的最大值.19.如圖,在四棱錐中,底面為平行四邊形,點為中點,且.(1)證明:平面;(2)證明:平面平面.20.設(shè)數(shù)列為等比數(shù)列,且,,(1)求數(shù)列的通項公式:(2)設(shè),數(shù)列的前項和,求證:.21.如圖,已知在側(cè)棱垂直于底面三棱柱中,,,,,點是的中點.(1)求證:;(2)求證:(3)求三棱錐的體積.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】

設(shè)是的外心,則三棱錐體積最大時,平面,球心在上.由此可計算球半徑.【詳解】如圖,設(shè)是的外心,則三棱錐體積最大時,平面,球心在上.∵,∴,即,∴.又,∴,.∵平面,∴,設(shè)球半徑為,則由得,解得,∴球體積為.故選A.【點睛】本題考查球的體積,關(guān)鍵是確定球心位置求出球的半徑.2、A【解析】

利用坐標(biāo)表示出,根據(jù)垂直關(guān)系可知,解方程求得結(jié)果.【詳解】,,解得:本題正確選項:【點睛】本題考查向量垂直關(guān)系的坐標(biāo)表示,屬于基礎(chǔ)題.3、A【解析】,所以,令,解得n≤7,即n≤7時遞增,n>7遞減,所以a1<a2<a3<…<a7=a8>a9>….所以a7=a8最大.本題選擇A選項.4、B【解析】

先利用兩角和的余弦公式求出,通過條件可求得,進(jìn)而可得.【詳解】解:,因為,則,故,故選:B.【點睛】本題考查兩角和的正切公式,注意角的范圍的確定,是基礎(chǔ)題.5、A【解析】

易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺,再根據(jù)圓臺的體積公式求解即可.【詳解】易得梯形繞著旋轉(zhuǎn)而成的幾何體為圓臺,圓臺的高,上底面圓半徑,下底面圓半徑.故該圓臺的體積故選:A【點睛】本題主要考查了旋轉(zhuǎn)體中圓臺的體積公式,屬于基礎(chǔ)題.6、C【解析】

利用圓心到直線的距離等于圓的半徑即可求解.【詳解】由題得圓的圓心坐標(biāo)為(0,0),所以.故選C【點睛】本題主要考查直線和圓的位置關(guān)系,意在考查學(xué)生對該知識的理解掌握水平,屬于基礎(chǔ)題.7、A【解析】

由頻率和為1,可算得成績大于90分對應(yīng)的頻率,然后由頻數(shù)÷總數(shù)=頻率,即可得到本題答案.【詳解】由圖,得成績大于90分對應(yīng)的頻率=,設(shè)該校參加初賽的人數(shù)為x,則,得,所以該校參加初賽的人數(shù)約為200.故選:A【點睛】本題主要考查頻率直方圖的相關(guān)計算,涉及到頻率和為1以及頻數(shù)÷總數(shù)=頻率的應(yīng)用.8、B【解析】由三角形的三邊關(guān)系,可得“三角形函數(shù)”的最大值小于最小值的二倍,因為單調(diào)遞增,無最大值和最小值,故排除A,,符合“三角形函數(shù)”的條件,即B正確,單調(diào)遞增,最大值為4,最小值為1,故排除C,單調(diào)遞增,最小值為1,最大值為,故排除D.故選B.點睛:本題以新定義為載體考查函數(shù)的單調(diào)性和最值;解決本題的關(guān)鍵在于正確理解“三角形函數(shù)”的含義,正確將問題轉(zhuǎn)化為“判定函數(shù)的最大值和最小值間的關(guān)系”進(jìn)行處理,充分體現(xiàn)轉(zhuǎn)化思想的應(yīng)用.9、C【解析】

在中,由余弦定理求得,在中,利用正弦定理求得BD,則可得CD.【詳解】在中,由余弦定理可得.又,故為直角三角形,故.因為,且為銳角,故.由利用正弦定理可得,代值可得,故.故選:C.【點睛】本題考查利用正弦定理以及余弦定理解三角形,屬于綜合基礎(chǔ)題.10、A【解析】

由題意,得直線是線段的中垂線,則其必過圓的圓心,將圓心代入直線,即可得本題答案.【詳解】解:由題意,得直線是線段的中垂線,所以直線過圓的圓心,圓的圓心為,,解得.故選:A.【點睛】本題給出直線與圓相交,且兩個交點關(guān)于已知直線對稱,求參數(shù)的值.著重考查了直線與圓的位置關(guān)系等知識,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

由誘導(dǎo)公式求解即可.【詳解】因為所以故答案為:【點睛】本題主要考查了利用誘導(dǎo)公式化簡求值,屬于基礎(chǔ)題.12、-1【解析】

根據(jù)線性規(guī)劃的基本方法求解即可.【詳解】畫出可行域有:因為.根據(jù)當(dāng)直線縱截距最大時,取得最小值.由圖易得在處取得最小值.故答案為:【點睛】本題主要考查了線性規(guī)劃的基本運用,屬于基礎(chǔ)題.13、【解析】如圖所示,由題意可得|OA|=a,|AN|=|AM|=b,∵∠MAN=60°,∴|AP|=b,∴|OP|=.設(shè)雙曲線C的一條漸近線y=x的傾斜角為θ,則tanθ=.又tanθ=,∴,解得a2=3b2,∴e=.答案:點睛:求雙曲線的離心率的值(或范圍)時,可將條件中提供的雙曲線的幾何關(guān)系轉(zhuǎn)化為關(guān)于雙曲線基本量的方程或不等式,再根據(jù)和轉(zhuǎn)化為關(guān)于離心率e的方程或不等式,通過解方程或不等式求得離心率的值(或取值范圍).14、.【解析】

由題意首先求得平均數(shù),然后求解方差即可.【詳解】由題意,該組數(shù)據(jù)的平均數(shù)為,所以該組數(shù)據(jù)的方差是.【點睛】本題主要考查方差的計算公式,屬于基礎(chǔ)題.15、【解析】

求得,則可將問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,利用二次函數(shù)的基本性質(zhì)求解即可.【詳解】由等比數(shù)列的通項公式可得,,則問題轉(zhuǎn)化為求使得最大且使得為偶數(shù)的正整數(shù)的值,,當(dāng)時,取得最大值,此時為偶數(shù).因此,的最大項是第項.故答案為:.【點睛】本題考查等比數(shù)列前項積最值的計算,將問題進(jìn)行轉(zhuǎn)化是解題的關(guān)鍵,考查分析問題和解決問題的能力,屬于中等題.16、【解析】

觀察式子特點可知,分子上兩余弦的角的和是,分母上兩個正弦的角的和是,據(jù)此規(guī)律即可寫出式子【詳解】觀察式子規(guī)律可總結(jié)出一般規(guī)律:,可賦值,得故答案為:【點睛】本題考查歸納推理能力,能找出余角關(guān)系和補(bǔ)角關(guān)系是解題的關(guān)鍵,屬于基礎(chǔ)題三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)見解析【解析】

(1)結(jié)合,構(gòu)造數(shù)列,證明得到該數(shù)列為等差數(shù)列,結(jié)合等差通項數(shù)列計算方法,即可.(2)運用裂項相消法,即可.【詳解】(1)由,(即),可得,所以,所以數(shù)列是以為首項,以2為公差的等差數(shù)列,所以,即.(2),所以,因為,所以.【點睛】本道題考查了等差數(shù)列通項計算方法和裂項相消法,難度一般.18、(1);(2)【解析】

(1)法一:在中,利用余弦定理即可得到的長度;法二:在中,由正弦定理可求得,再利用正弦定理即可得到的長度;(2)在中,使用正弦定理可知是等邊三角形或直角三角形,分兩種情況分別找出面積表達(dá)式計算最大值即可.【詳解】(1)法一:中,由余弦定理得,即,解得或舍去,所以.法二:中,由正弦定理得,即.解得,故,.由正弦定理得,即,解得.(2)中,由正弦定理及,可得,即或,即或.是等邊三角形或直角三角形.中,設(shè),由正弦定理得.若是等邊三角形,則.∵當(dāng)時,面積的最大值為;若是直角三角形,則.當(dāng)時,面積的最大值為;綜上所述,面積的最大值為.【點睛】本題主要考查正弦定理,余弦定理,面積公式,三角函數(shù)最值的相關(guān)應(yīng)用,綜合性強(qiáng),意在考查學(xué)生的計算能力,轉(zhuǎn)化能力,分析三角形的形狀并討論是解決本題的關(guān)鍵.19、(1)證明見解析;(2)證明見解析【解析】

(1)連接交于點,連接,可證,從而可證平面.(2)可證平面,從而得到平面平面.【詳解】(1)連接交于點,連接,因為底面為平行四邊形,所以為中點.在中,又為中點,所以.又平面,平面,所以平面.(2)因為底面為平行四邊形,所以.又即,所以.又即.又平面,平面,,所以平面.又平面,所以平面平面.【點睛】線面平行的證明的關(guān)鍵是在面中找到一條與已知直線平行的直線,找線的方法是平行投影或中心投影,我們也可以通過面面平行證線面平行,這個方法的關(guān)鍵是構(gòu)造過已知直線的平面,證明該平面與已知平面平行.線面垂直的判定可由線線垂直得到,注意線線是相交的,也可由面面垂直得到,注意線在面內(nèi)且線垂直于兩個平面的交線.而面面垂直的證明可以通過線面垂直得到,也可以通過證明二面角是直二面角.20、(1)(2)詳見解析【解析】

(1)將已知條件轉(zhuǎn)化為等比數(shù)列的基本量和,得到的值,從而得到數(shù)列的通項;(2)根據(jù)題意寫出,然后得到數(shù)列的通項,利用列項相消法進(jìn)行求和,得到其前項和,然后進(jìn)行證明.【詳解】設(shè)等比數(shù)列的首項為,公比為,因為,所以,所以所以;(2),所以,所以.因為,所以.【點睛】本題考查等比數(shù)列的基本量計算,裂項相消法求數(shù)列的和,屬于簡單題.2

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論