![2022年遼寧省撫順市新賓滿族自治縣中考數學模試卷含解析_第1頁](http://file4.renrendoc.com/view5/M01/33/01/wKhkGGZWb42AVpjwAAHWqhQlWj4701.jpg)
![2022年遼寧省撫順市新賓滿族自治縣中考數學模試卷含解析_第2頁](http://file4.renrendoc.com/view5/M01/33/01/wKhkGGZWb42AVpjwAAHWqhQlWj47012.jpg)
![2022年遼寧省撫順市新賓滿族自治縣中考數學模試卷含解析_第3頁](http://file4.renrendoc.com/view5/M01/33/01/wKhkGGZWb42AVpjwAAHWqhQlWj47013.jpg)
![2022年遼寧省撫順市新賓滿族自治縣中考數學模試卷含解析_第4頁](http://file4.renrendoc.com/view5/M01/33/01/wKhkGGZWb42AVpjwAAHWqhQlWj47014.jpg)
![2022年遼寧省撫順市新賓滿族自治縣中考數學模試卷含解析_第5頁](http://file4.renrendoc.com/view5/M01/33/01/wKhkGGZWb42AVpjwAAHWqhQlWj47015.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022年遼寧省撫順市新賓滿族自治縣中考數學模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(共10小題,每小題3分,共30分)1.如圖,有5個相同的小立方體搭成的幾何體如圖所示,則它的左視圖是()A. B. C. D.2.已知關于x的不等式組至少有兩個整數解,且存在以3,a,7為邊的三角形,則a的整數解有()A.4個 B.5個 C.6個 D.7個3.如圖,已知△ABC,AB=AC,將△ABC沿邊BC翻轉,得到的△DBC與原△ABC拼成四邊形ABDC,則能直接判定四邊形ABDC是菱形的依據是()A.四條邊相等的四邊形是菱形 B.一組鄰邊相等的平行四邊形是菱形C.對角線互相垂直的平行四邊形是菱形 D.對角線互相垂直平分的四邊形是菱形4.半徑為的正六邊形的邊心距和面積分別是()A., B.,C., D.,5.有下列四種說法:①半徑確定了,圓就確定了;②直徑是弦;③弦是直徑;④半圓是弧,但弧不一定是半圓.其中,錯誤的說法有()A.1種 B.2種 C.3種 D.4種6.﹣23的相反數是()A.﹣8 B.8 C.﹣6 D.67.如圖,A(4,0),B(1,3),以OA、OB為邊作□OACB,反比例函數(k≠0)的圖象經過點C.則下列結論不正確的是()A.□OACB的面積為12B.若y<3,則x>5C.將□OACB向上平移12個單位長度,點B落在反比例函數的圖象上.D.將□OACB繞點O旋轉180°,點C的對應點落在反比例函數圖象的另一分支上.8.估計﹣2的值應該在()A.﹣1﹣0之間 B.0﹣1之間 C.1﹣2之間 D.2﹣3之間9.為豐富學生課外活動,某校積極開展社團活動,開設的體育社團有:A:籃球,B:排球,C:足球,D:羽毛球,E:乒乓球.學生可根據自己的愛好選擇一項,李老師對八年級同學選擇體育社團情況進行調查統(tǒng)計,制成了兩幅不完整的統(tǒng)計圖(如圖),則以下結論不正確的是()A.選科目E的有5人B.選科目A的扇形圓心角是120°C.選科目D的人數占體育社團人數的D.據此估計全校1000名八年級同學,選擇科目B的有140人10.根據《天津市北大港濕地自然保護總體規(guī)劃(2017﹣2025)》,2018年將建立養(yǎng)殖業(yè)退出補償機制,生態(tài)補水78000000m1.將78000000用科學記數法表示應為()A.780×105B.78×106C.7.8×107D.0.78×108二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,是由形狀相同的正六邊形和正三角形鑲嵌而成的一組有規(guī)律的圖案,則第n個圖案中陰影小三角形的個數是.12.已知:如圖,△ABC內接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由,線段CD和線段BD所圍成圖形的陰影部分的面積為__.13.如圖,有一塊邊長為4的正方形塑料模板ABCD,將一塊足夠大的直角三角板的直角頂點落在A點,兩條直角邊分別與CD交于點F,與CB延長線交于點E.則四邊形AECF的面積是.14.空氣質量指數,簡稱AQI,如果AQI在0~50空氣質量類別為優(yōu),在51~100空氣質量類別為良,在101~150空氣質量類別為輕度污染,按照某市最近一段時間的AQI畫出的頻數分布直方圖如圖所示.已知每天的AQI都是整數,那么空氣質量類別為優(yōu)和良的天數共占總天數的百分比為______%.15.已知n>1,M=,N=,P=,則M、N、P的大小關系為.16.小明為了統(tǒng)計自己家的月平均用電量,做了如下記錄并制成了表格,通過計算分析小明得出一個結論:小明家的月平均用電量為330千瓦時.請判斷小明得到的結論是否合理并且說明理由______.月份六月七月八月用電量(千瓦時)290340360月平均用電量(千瓦時)330三、解答題(共8題,共72分)17.(8分)如圖,在矩形ABCD中,點F在邊BC上,且AF=AD,過點D作DE⊥AF,垂足為點E.求證:DE=AB;以D為圓心,DE為半徑作圓弧交AD于點G,若BF=FC=1,試求EG的長.18.(8分)如圖,AB、CD是⊙O的直徑,DF、BE是弦,且DF=BE,求證:∠D=∠B.19.(8分)如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數y=的圖象上.(1)求反比例函數y=的表達式;(2)在x軸上是否存在一點P,使得S△AOP=S△AOB,若存在,求所有符合條件點P的坐標;若不存在,簡述你的理由.20.(8分)如圖,在Rt△ABC中,∠C=90°,O、D分別為AB、AC上的點,經過A、D兩點的⊙O分別交于AB、AC于點E、F,且BC與⊙O相切于點D.(1)求證:DF=(2)當AC=2,CD=1時,求⊙O的面積.21.(8分)如圖,?ABCD的邊CD為斜邊向內作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且點E在平行四邊形內部,連接AE、BE,求∠AEB的度數.22.(10分)如圖,在平面直角坐標系中,已知OA=6厘米,OB=8厘米.點P從點B開始沿BA邊向終點A以1厘米/秒的速度移動;點Q從點A開始沿AO邊向終點O以1厘米/秒的速度移動.若P、Q同時出發(fā)運動時間為t(s).(1)t為何值時,△APQ與△AOB相似?(2)當t為何值時,△APQ的面積為8cm2?23.(12分)如圖(1),P為△ABC所在平面上一點,且∠APB=∠BPC=∠CPA=120°,則點P叫做△ABC的費馬點.(1)如果點P為銳角△ABC的費馬點,且∠ABC=60°.①求證:△ABP∽△BCP;②若PA=3,PC=4,則PB=.(2)已知銳角△ABC,分別以AB、AC為邊向外作正△ABE和正△ACD,CE和BD相交于P點.如圖(2)①求∠CPD的度數;②求證:P點為△ABC的費馬點.24.某跳水隊為了解運動員的年齡情況,作了一次年齡調查,根據跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據相關信息,解答下列問題:本次接受調查的跳水運動員人數為,圖①中m的值為;求統(tǒng)計的這組跳水運動員年齡數據的平均數、眾數和中位數.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、C【解析】試題解析:左視圖如圖所示:故選C.2、A【解析】
依據不等式組至少有兩個整數解,即可得到a>5,再根據存在以3,a,7為邊的三角形,可得4<a<10,進而得出a的取值范圍是5<a<10,即可得到a的整數解有4個.【詳解】解:解不等式①,可得x<a,解不等式②,可得x≥4,∵不等式組至少有兩個整數解,∴a>5,又∵存在以3,a,7為邊的三角形,∴4<a<10,∴a的取值范圍是5<a<10,∴a的整數解有4個,故選:A.【點睛】此題考查的是一元一次不等式組的解法和三角形的三邊關系的運用,求不等式組的解集應遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.3、A【解析】
根據翻折得出AB=BD,AC=CD,推出AB=BD=CD=AC,根據菱形的判定推出即可.【詳解】∵
將
△ABC
延底邊
BC
翻折得到
△DBC
,∴AB=BD
,
AC=CD
,∵AB=AC
,∴AB=BD=CD=AC
,∴
四邊形
ABDC
是菱形;故選A.【點睛】本題考查了菱形的判定方法:四邊都相等的四邊形是菱形;對角線互相垂直的平行四邊形是菱形;有一組鄰邊相等的平行四邊形是菱形.4、A【解析】
首先根據題意畫出圖形,易得△OBC是等邊三角形,繼而可得正六邊形的邊長為R,然后利用解直角三角形求得邊心距,又由S正六邊形=求得正六邊形的面積.【詳解】解:如圖,O為正六邊形外接圓的圓心,連接OB,OC,過點O作OH⊥BC于H,∵六邊形ABCDEF是正六邊形,半徑為,∴∠BOC=,∵OB=OC=R,∴△OBC是等邊三角形,∴BC=OB=OC=R,∵OH⊥BC,∴在中,,即,∴,即邊心距為;∵,∴S正六邊形=,故選:A.【點睛】本題考查了正多邊形和圓的知識;求得正六邊形的中心角為60°,得到等邊三角形是正確解答本題的關鍵.5、B【解析】
根據弦的定義、弧的定義、以及確定圓的條件即可解決.【詳解】解:圓確定的條件是確定圓心與半徑,是假命題,故此說法錯誤;直徑是弦,直徑是圓內最長的弦,是真命題,故此說法正確;弦是直徑,只有過圓心的弦才是直徑,是假命題,故此說法錯誤;④半圓是弧,但弧不一定是半圓,圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫半圓,所以半圓是弧.但比半圓大的弧是優(yōu)弧,比半圓小的弧是劣弧,不是所有的弧都是半圓,是真命題,故此說法正確.
其中錯誤說法的是①③兩個.故選B.【點睛】本題考查弦與直徑的區(qū)別,弧與半圓的區(qū)別,及確定圓的條件,不要將弦與直徑、弧與半圓混淆.6、B【解析】∵=﹣8,﹣8的相反數是8,∴的相反數是8,故選B.7、B【解析】
先根據平行四邊形的性質得到點的坐標,再代入反比例函數(k≠0)求出其解析式,再根據反比例函數的圖象與性質對選項進行判斷.【詳解】解:A(4,0),B(1,3),,,反比例函數(k≠0)的圖象經過點,,反比例函數解析式為.□OACB的面積為,正確;當時,,故錯誤;將□OACB向上平移12個單位長度,點的坐標變?yōu)椋诜幢壤瘮祱D象上,故正確;因為反比例函數的圖象關于原點中心對稱,故將□OACB繞點O旋轉180°,點C的對應點落在反比例函數圖象的另一分支上,正確.故選:B.【點睛】本題綜合考查了平行四邊形的性質和反比例函數的圖象與性質,結合圖形,熟練掌握和運用相關性質定理是解答關鍵.8、A【解析】
直接利用已知無理數得出的取值范圍,進而得出答案.【詳解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之間.故選A.【點睛】此題主要考查了估算無理數大小,正確得出的取值范圍是解題關鍵.9、B【解析】
A選項先求出調查的學生人數,再求選科目E的人數來判定,B選項先求出A科目人數,再利用×360°判定即可,C選項中由D的人數及總人數即可判定,D選項利用總人數乘以樣本中B人數所占比例即可判定.【詳解】解:調查的學生人數為:12÷24%=50(人),選科目E的人數為:50×10%=5(人),故A選項正確,選科目A的人數為50﹣(7+12+10+5)=16人,選科目A的扇形圓心角是×360°=115.2°,故B選項錯誤,選科目D的人數為10,總人數為50人,所以選科目D的人數占體育社團人數的,故C選項正確,估計全校1000名八年級同學,選擇科目B的有1000×=140人,故D選項正確;故選B.【點睛】本題主要考查了條形統(tǒng)計圖及扇形統(tǒng)計圖,解題的關鍵是讀懂統(tǒng)計圖,從統(tǒng)計圖中找到準確信息.10、C【解析】
科學記數法記數時,主要是準確把握標準形式a×10n即可.【詳解】解:78000000=7.8×107.故選C.【點睛】科學記數法的形式是a×10n,其中1≤|a|<10,n是整數,若這個數是大于10的數,則n比這個數的整數位數少1.二、填空題(本大題共6個小題,每小題3分,共18分)11、4n﹣1.【解析】由圖可知:第一個圖案有陰影小三角形1個,第二圖案有陰影小三角形1+4=6個,第三個圖案有陰影小三角形1+8=11個,···那么第n個就有陰影小三角形1+4(n﹣1)=4n﹣1個.12、2﹣π.【解析】試題分析:根據題意可得:∠O=2∠A=60°,則△OBC為等邊三角形,根據∠BCD=30°可得:∠OCD=90°,OC=AC=2,則CD=,,則.13、1【解析】
∵四邊形ABCD為正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD,∴S△AEB=S△AFD,∴它們都加上四邊形ABCF的面積,可得到四邊形AECF的面積=正方形的面積=1.14、80【解析】【分析】先求出AQI在0~50的頻數,再根據%,求出百分比.【詳解】由圖可知AQI在0~50的頻數為10,所以,空氣質量類別為優(yōu)和良的天數共占總天數的百分比為:%=80%..故答案為80【點睛】本題考核知識點:數據的分析.解題關鍵點:從統(tǒng)計圖獲取信息,熟記百分比計算方法.15、M>P>N【解析】∵n>1,∴n-1>0,n>n-1,∴M>1,0<N<1,0<P<1,∴M最大;,∴,∴M>P>N.點睛:本題考查了不等式的性質和利用作差法比較兩個代數式的大小.作差法比較大小的方法是:如果a-b>0,那么a>b;如果a-b=0,那么a=b;如果a-b<0,那么a<b;另外本題還用到了不等式的傳遞性,即如果a>b,b>c,那么a>b>c.16、不合理,樣本數據不具有代表性【解析】
根據表中所取的樣本不具有代表性即可得到結論.【詳解】不合理,樣本數據不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).故答案為:不合理,樣本數據不具有代表性(例:夏季高峰用電量大不能代表年平均用電量).【點睛】本題考查了統(tǒng)計表,認真分析表中數據是解題的關鍵.三、解答題(共8題,共72分)17、(1)詳見解析;(2)36【解析】∵四邊形ABCD是矩形,∴∠B=∠C=90°,AB=CD,BC=AD,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中∠AED=∠B=90∴△ADE≌△FAB(AAS),∴AE=BF=1∵BF=FC=1∴BC=AD=2故在Rt△ADE中,∠ADE=30°,DE=3,∴EG的長=30×π×3180=18、證明見解析.【解析】
根據在同圓中等弦對的弧相等,AB、CD是⊙O的直徑,則,由FD=EB,得,,由等量減去等量仍是等量得:,即,由等弧對的圓周角相等,得∠D=∠B.【詳解】解:方法(一)證明:∵AB、CD是⊙O的直徑,∴.∵FD=EB,∴.∴.即.∴∠D=∠B.方法(二)證明:如圖,連接CF,AE.∵AB、CD是⊙O的直徑,∴∠F=∠E=90°(直徑所對的圓周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【點睛】本題利用了在同圓中等弦對的弧相等,等弧對的弦,圓周角相等,等量減去等量仍是等量求解.19、(1)y=;(1)(﹣1,0)或(1,0)【解析】
(1)把A的坐標代入反比例函數的表達式,即可求出答案;(1)求出∠A=60°,∠B=30°,求出線段OA和OB,求出△AOB的面積,根據已知S△AOPS△AOB,求出OP長,即可求出答案.【詳解】(1)把A(,1)代入反比例函數y得:k=1,所以反比例函數的表達式為y;(1)∵A(,1),OA⊥AB,AB⊥x軸于C,∴OC,AC=1,OA1.∵tanA,∴∠A=60°.∵OA⊥OB,∴∠AOB=90°,∴∠B=30°,∴OB=1OC=1,∴S△AOBOA?OB1×1.∵S△AOPS△AOB,∴OP×AC.∵AC=1,∴OP=1,∴點P的坐標為(﹣1,0)或(1,0).【點睛】本題考查了用待定系數法求反比例函數的解析式,三角形的面積,解直角三角形等知識點,求出反比例函數的解析式和求出△AOB的面積是解答此題的關鍵.20、(1)證明見解析;(2)2516【解析】
(1)連接OD,由BC為圓O的切線,得到OD垂直于BC,再由AC垂直于BC,得到OD與AC平行,利用兩直線平行得到一對內錯角相等,再由OA=OD,利用等邊對等角得到一對角相等,等量代換得到AD為角平分線,利用相等的圓周角所對的弧相等即可得證;
(2)連接ED,在直角三角形ACD中,由AC與CD的長,利用勾股定理求出AD的長,由(1)得出的兩個圓周角相等,及一對直角相等得到三角形ACD與三角形ADE相似,由相似得比例求出AE的長,進而求出圓的半徑,即可求出圓的面積.【詳解】證明:連接OD,∵BC為圓O的切線,∴OD⊥CB,∵AC⊥CB,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠OAD,則DF=(2)解:連接ED,在Rt△ACD中,AC=2,CD=1,根據勾股定理得:AD=5,∵∠CAD=∠OAD,∠ACD=∠ADE=90°,∴△ACD∽△ADE,∴ADAE=AC∴AE=52,即圓的半徑為5則圓的面積為25π16【點睛】此題考查了切線的性質,圓周角定理,相似三角形的判定與性質,以及勾股定理,熟練掌握相關性質是解本題的關鍵.21、135°【解析】
先證明AD=DE=CE=BC,得出∠DAE=∠AED,∠CBE=∠CEB,∠EDC=∠ECD=45°,設∠DAE=∠AED=x,∠CBE=∠CEB=y,求出∠ADC=225°-2x,∠BAD=2x-45°,由平行四邊形的對角相等得出方程,求出x+y=135°,即可得出結果.【詳解】解:∵四邊形ABCD是平行四邊形,∴AD=BC,∠BAD=∠BCD,∠BAD+∠ADC=180°,∵AD=DE=CE,∴AD=DE=CE=BC,∴∠DAE=∠AED,∠CBE=∠CEB,∵∠DEC=90°,∴∠EDC=∠ECD=45°,設∠DAE=∠AED=x,∠CBE=∠CEB=y,∴∠ADE=180°﹣2x,∠BCE=180°﹣2y,∴∠ADC=180°﹣2x+45°=225°﹣2x,∠BCD=225°﹣2y,∴∠BAD=180°﹣(225°﹣2x)=2x﹣45°,∴2x﹣45°=225°﹣2y,∴x+y=135°,∴∠AEB=360°﹣135°﹣90°=135°.【點睛】本題考查了平行四邊形的性質,解題的關鍵是熟練的掌握平行四邊形的性質.22、(1)t=秒;(1)t=5﹣(s).【解析】
(1)利用勾股定理列式求出AB,再表示出AP、AQ,然后分∠APQ和∠AQP是直角兩種情況,利用相似三角形對應邊成比例列式求解即可;(1)過點P作PC⊥OA于C,利用∠OAB的正弦求出PC,然后根據三角形的面積公式列出方程求解即可.【詳解】解:(1)∵點A(0,6),B(8,0),∴AO=6,BO=8,∴AB===10,∵點P的速度是每秒1個單位,點Q的速度是每秒1個單位,∴AQ=t,AP=10﹣t,①∠APQ是直角時,△APQ∽△AOB,∴,即,解得t=>6,舍去;②∠AQP是直角時,△AQP∽△AOB,∴,即,解得t=,綜上所述,t=秒時,△APQ與△AOB相似;(1)如圖,過點P作PC⊥OA于點C,則PC=AP?sin∠OAB=(10﹣t)×=(10﹣t),∴△APQ的面積=×t×(10﹣t)=8,整理,得:t1﹣10t+10=0,解得:t=5+>6(舍去),或t=5﹣,故當t=5﹣(s)時,△APQ的面積為8cm1.【點睛】本題主要考查了相似三角形的判定與性質、銳角三角函數、三角形的面積以及一元二次方程的應用能力,分類討論是解題的關鍵.23、(1)①證明見解析;②23【解析】試題分析:(1)①根據題意,利用內角和定理及等式性質得到一對角相等,利用兩角相等的三角形相似即可得證;②由三角形ABP與三角形BCP相似,得比例,將PA與PC的長代入求出PB的長即可;(2)①根據三角形ABE與三角形ACD為等邊三角形,利用等邊三角形的性質得到兩對邊相等,兩個角為60°,利用等式的性質得到夾角相等,利用SAS得到三角形ACE與三角形ABD全等,利用全等三角形的對應角相等得到∠1=∠2,再由對頂角相等,得到∠5=∠6,即可求出所求角度數;②由三角形ADF與三角形CPF相似,得到比例式,變形得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國防火面料行業(yè)發(fā)展趨勢預測及投資戰(zhàn)略咨詢報告
- 2024-2026年中國手寫板行業(yè)市場供需格局及行業(yè)前景展望報告
- 堆浸行業(yè)深度研究報告
- 臨滄稅務咨詢合同范本
- 2025年度文化娛樂場所租賃及運營管理合同
- 傳媒公司拍攝合同范本
- 532裝修合同范本
- 城區(qū)房屋租賃合同范本
- 2025年膨化食品生產線行業(yè)深度研究分析報告
- 礦山生產承包合同范本
- 廣東省梅州市梅縣區(qū)2023-2024學年八年級上學期期末數學試題
- 護理人員的職業(yè)安全防護
- 2024數據中心綜合布線工程設計
- 胸外科講課全套
- 醫(yī)療器械GSP相關
- 2023年海南省公務員錄用考試《行測》真題卷及答案解析
- 電力工程施工售后保障方案
- 中國心力衰竭診斷和治療指南2024解讀(完整版)
- 多源數據整合
- 新人教版高中數學必修第二冊第六章平面向量及其應用教案 (一)
- 校園招聘活動策劃方案(6篇)
評論
0/150
提交評論