甘肅省天水市重點名校2022年中考數(shù)學五模試卷含解析_第1頁
甘肅省天水市重點名校2022年中考數(shù)學五模試卷含解析_第2頁
甘肅省天水市重點名校2022年中考數(shù)學五模試卷含解析_第3頁
甘肅省天水市重點名校2022年中考數(shù)學五模試卷含解析_第4頁
甘肅省天水市重點名校2022年中考數(shù)學五模試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

甘肅省天水市重點名校2022年中考數(shù)學五模試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,△ADE繞正方形ABCD的頂點A順時針旋轉(zhuǎn)90°,得△ABF,連接EF交AB于H,有如下五個結(jié)論①AE⊥AF;②EF:AF=:1;③AF2=FH?FE;④∠AFE=∠DAE+∠CFE⑤FB:FC=HB:EC.則正確的結(jié)論有()A.2個 B.3個 C.4個 D.5個2.長春市奧林匹克公園即將于2018年年底建成,它的總投資額約為2500000000元,2500000000這個數(shù)用科學記數(shù)法表示為()A.0.25×1010B.2.5×1010C.2.5×109D.25×1083.拋物線y=mx2﹣8x﹣8和x軸有交點,則m的取值范圍是()A.m>﹣2 B.m≥﹣2 C.m≥﹣2且m≠0 D.m>﹣2且m≠04.下列計算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x5.如圖,四邊形ABCD中,AB=CD,AD∥BC,以點B為圓心,BA為半徑的圓弧與BC交于點E,四邊形AECD是平行四邊形,AB=3,則的弧長為()A. B.π C. D.36.a(chǎn)的倒數(shù)是3,則a的值是()A. B.﹣ C.3 D.﹣37.下列說法中,正確的是()A.不可能事件發(fā)生的概率為0B.隨機事件發(fā)生的概率為C.概率很小的事件不可能發(fā)生D.投擲一枚質(zhì)地均勻的硬幣100次,正面朝上的次數(shù)一定為50次8.一個由圓柱和圓錐組成的幾何體如圖水平放置,其主(正)視圖為()A. B. C. D.9.將一把直尺與一塊三角板如圖所示放置,若則∠2的度數(shù)為()A.50° B.110° C.130° D.150°10.如圖,在矩形AOBC中,O為坐標原點,OA、OB分別在x軸、y軸上,點B的坐標為(0,3),∠ABO=30°,將△ABC沿AB所在直線對折后,點C落在點D處,則點D的坐標為()A.(,) B.(2,) C.(,) D.(,3﹣)11.如圖,Rt△ABC中,∠ACB=90°,AB=5,AC=4,CD⊥AB于D,則tan∠BCD的值為()A. B. C. D.12.有下列四個命題:①相等的角是對頂角;②兩條直線被第三條直線所截,同位角相等;③同一種正五邊形一定能進行平面鑲嵌;④垂直于同一條直線的兩條直線互相垂直.其中假命題的個數(shù)有()A.1個B.2個C.3個D.4個二、填空題:(本大題共6個小題,每小題4分,共24分.)13.據(jù)統(tǒng)計,今年無錫黿頭渚“櫻花節(jié)”活動期間入園賞櫻人數(shù)約803萬人次,用科學記數(shù)法可表示為_____人次.14.如圖,△ABC中,D、E分別在AB、AC上,DE∥BC,AD:AB=1:3,則△ADE與△ABC的面積之比為______.15.已知兩圓內(nèi)切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.16.如圖所示,D、E分別是△ABC的邊AB、BC上的點,DE∥AC,若S△BDE:S△CDE=1:3,則S△BDE:S四邊形DECA的值為_____.17.如圖,直線y=k1x+b與雙曲線交于A、B兩點,其橫坐標分別為1和5,則不等式k1x<+b的解集是▲.18.閱讀下面材料:數(shù)學活動課上,老師出了一道作圖問題:“如圖,已知直線l和直線l外一點P.用直尺和圓規(guī)作直線PQ,使PQ⊥l于點Q.”小艾的作法如下:(1)在直線l上任取點A,以A為圓心,AP長為半徑畫?。?)在直線l上任取點B,以B為圓心,BP長為半徑畫?。?)兩弧分別交于點P和點M(4)連接PM,與直線l交于點Q,直線PQ即為所求.老師表揚了小艾的作法是對的.請回答:小艾這樣作圖的依據(jù)是_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)如圖,拋物線y=ax2+ax﹣12a(a<0)與x軸交于A、B兩點(A在B的左側(cè)),與y軸交于點C,點M是第二象限內(nèi)拋物線上一點,BM交y軸于N.(1)求點A、B的坐標;(2)若BN=MN,且S△MBC=,求a的值;(3)若∠BMC=2∠ABM,求的值.20.(6分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進10顆黑色棋子,則取得黑色棋子的概率變?yōu)椋髕和y的值.21.(6分)某市教育局為了了解初一學生第一學期參加社會實踐活動的情況,隨機抽查了本市部分初一學生第一學期參加社會實踐活動的天數(shù),并將得到的數(shù)據(jù)繪制成了下面兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,回答下列問題:扇形統(tǒng)計圖中a的值為%,該扇形圓心角的度數(shù)為;補全條形統(tǒng)計圖;如果該市共有初一學生20000人,請你估計“活動時間不少于5天”的大約有多少人?22.(8分)如圖,拋物線(a≠0)交x軸于A、B兩點,A點坐標為(3,0),與y軸交于點C(0,4),以OC、OA為邊作矩形OADC交拋物線于點G.求拋物線的解析式;拋物線的對稱軸l在邊OA(不包括O、A兩點)上平行移動,分別交x軸于點E,交CD于點F,交AC于點M,交拋物線于點P,若點M的橫坐標為m,請用含m的代數(shù)式表示PM的長;在(2)的條件下,連結(jié)PC,則在CD上方的拋物線部分是否存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似?若存在,求出此時m的值,并直接判斷△PCM的形狀;若不存在,請說明理由.23.(8分)如圖,某校自行車棚的人字架棚頂為等腰三角形,D是AB的中點,中柱CD=1米,∠A=27°,求跨度AB的長(精確到0.01米).24.(10分)如圖,在城市改造中,市政府欲在一條人工河上架一座橋,河的兩岸PQ與MN平行,河岸MN上有A、B兩個相距50米的涼亭,小亮在河對岸D處測得∠ADP=60°,然后沿河岸走了110米到達C處,測得∠BCP=30°,求這條河的寬.(結(jié)果保留根號)25.(10分)如圖,拋物線l:y=(x﹣h)2﹣2與x軸交于A,B兩點(點A在點B的左側(cè)),將拋物線ι在x軸下方部分沿軸翻折,x軸上方的圖象保持不變,就組成了函數(shù)?的圖象.(1)若點A的坐標為(1,0).①求拋物線l的表達式,并直接寫出當x為何值時,函數(shù)?的值y隨x的增大而增大;②如圖2,若過A點的直線交函數(shù)?的圖象于另外兩點P,Q,且S△ABQ=2S△ABP,求點P的坐標;(2)當2<x<3時,若函數(shù)f的值隨x的增大而增大,直接寫出h的取值范圍.26.(12分)某企業(yè)為杭州計算機產(chǎn)業(yè)基地提供電腦配件.受美元走低的影響,從去年1至9月,該配件的原材料價格一路攀升,每件配件的原材料價格y1(元)與月份x(1≤x≤9,且x取整數(shù))之間的函數(shù)關(guān)系如下表:月份x123456789價格y1(元/件)560580600620640660680700720隨著國家調(diào)控措施的出臺,原材料價格的漲勢趨緩,10至12月每件配件的原材料價格y2(元)與月份x(10≤x≤12,且x取整數(shù))之間存在如圖所示的變化趨勢:(1)請觀察題中的表格,用所學過的一次函數(shù)、反比例函數(shù)或二次函數(shù)的有關(guān)知識,直接寫出y1與x之間的函數(shù)關(guān)系式,根據(jù)如圖所示的變化趨勢,直接寫出y2與x之間滿足的一次函數(shù)關(guān)系式;(2)若去年該配件每件的售價為1000元,生產(chǎn)每件配件的人力成本為50元,其它成本30元,該配件在1至9月的銷售量p1(萬件)與月份x滿足關(guān)系式p1=0.1x+1.1(1≤x≤9,且x取整數(shù)),10至12月的銷售量p2(萬件)p2=﹣0.1x+2.9(10≤x≤12,且x取整數(shù)).求去年哪個月銷售該配件的利潤最大,并求出這個最大利潤.27.(12分)A糧倉和B糧倉分別庫存糧食12噸和6噸,現(xiàn)決定支援給C市10噸和D市8噸.已知從A糧倉調(diào)運一噸糧食到C市和D市的運費分別為400元和800元;從B糧倉調(diào)運一噸糧食到C市和D市的運費分別為300元和500元.設B糧倉運往C市糧食x噸,求總運費W(元)關(guān)于x的函數(shù)關(guān)系式.(寫出自變量的取值范圍)若要求總運費不超過9000元,問共有幾種調(diào)運方案?求出總運費最低的調(diào)運方案,最低運費是多少?

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、C【解析】

由旋轉(zhuǎn)性質(zhì)得到△AFB≌△AED,再根據(jù)相似三角對應邊的比等于相似比,即可分別求得各選項正確與否.【詳解】解:由題意知,△AFB≌△AED∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.∴AE⊥AF,故此選項①正確;∴∠AFE=∠AEF=∠DAE+∠CFE,故④正確;∵△AEF是等腰直角三角形,有EF:AF=:1,故此選項②正確;∵△AEF與△AHF不相似,∴AF2=FH·FE不正確.故此選項③錯誤,∵HB//EC,∴△FBH∽△FCE,∴FB:FC=HB:EC,故此選項⑤正確.故選:C【點睛】本題主要考查了正方形的性質(zhì)、等腰直角三角形的性質(zhì)、全等三角形的判定和性質(zhì)等知識,熟練地應用旋轉(zhuǎn)的性質(zhì)以及相似三角形的性質(zhì)是解決問題的關(guān)鍵.2、C【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).【詳解】2500000000的小數(shù)點向左移動9位得到2.5,所以2500000000用科學記數(shù)表示為:2.5×1.故選C.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關(guān)鍵要正確確定a的值以及n的值.3、C【解析】

根據(jù)二次函數(shù)的定義及拋物線與x軸有交點,即可得出關(guān)于m的一元一次不等式組,解之即可得出m的取值范圍.【詳解】解:∵拋物線和軸有交點,,解得:且.故選.【點睛】本題考查了拋物線與x軸的交點、二次函數(shù)的定義以及解一元一次不等式組,牢記“當時,拋物線與x軸有交點是解題的關(guān)鍵.4、A【解析】

依據(jù)合并同類項法則、單項式乘單項式法則、積的乘方法則進行判斷即可.【詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯誤;C、(x3)2=x6,故C錯誤;D、x3與x2不是同類項,不能合并,故D錯誤.故選A.【點睛】本題主要考查的是整式的運算,熟練掌握相關(guān)法則是解題的關(guān)鍵.5、B【解析】∵四邊形AECD是平行四邊形,

∴AE=CD,

∵AB=BE=CD=3,

∴AB=BE=AE,

∴△ABE是等邊三角形,

∴∠B=60°,∴的弧長=.故選B.6、A【解析】

根據(jù)倒數(shù)的定義進行解答即可.【詳解】∵a的倒數(shù)是3,∴3a=1,解得:a=.故選A.【點睛】本題考查的是倒數(shù)的定義,即乘積為1的兩個數(shù)叫互為倒數(shù).7、A【解析】試題分析:不可能事件發(fā)生的概率為0,故A正確;隨機事件發(fā)生的概率為在0到1之間,故B錯誤;概率很小的事件也可能發(fā)生,故C錯誤;投擲一枚質(zhì)地均勻的硬幣100次,正面向上的次數(shù)為50次是隨機事件,D錯誤;故選A.考點:隨機事件.8、A【解析】【分析】根據(jù)主視圖是從幾何體正面看得到的圖形,認真觀察實物,可得這個幾何體的主視圖為長方形上面一個三角形,據(jù)此即可得.【詳解】觀察實物,可知這個幾何體的主視圖為長方體上面一個三角形,只有A選項符合題意,故選A.【名師點睛】本題考查了幾何體的主視圖,明確幾何體的主視圖是從幾何體的正面看得到的圖形是解題的關(guān)鍵.9、C【解析】

如圖,根據(jù)長方形的性質(zhì)得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【詳解】∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故選C.【點睛】本題考查了平行線的性質(zhì),三角形外角的性質(zhì)等,準確識圖是解題的關(guān)鍵.10、A【解析】解:∵四邊形AOBC是矩形,∠ABO=10°,點B的坐標為(0,),∴AC=OB=,∠CAB=10°,∴BC=AC?tan10°=×=1.∵將△ABC沿AB所在直線對折后,點C落在點D處,∴∠BAD=10°,AD=.過點D作DM⊥x軸于點M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=AD=,∴AM=×cos10°=,∴MO=﹣1=,∴點D的坐標為(,).故選A.11、D【解析】

先求得∠A=∠BCD,然后根據(jù)銳角三角函數(shù)的概念求解即可.【詳解】解:∵∠ACB=90°,AB=5,AC=4,∴BC=3,在Rt△ABC與Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tanA==,故選D.【點睛】本題考查解直角三角形,三角函數(shù)值只與角的大小有關(guān),因而求一個角的函數(shù)值,可以轉(zhuǎn)化為求與它相等的其它角的三角函數(shù)值.12、D【解析】

根據(jù)對頂角的定義,平行線的性質(zhì)以及正五邊形的內(nèi)角及鑲嵌的知識,逐一判斷.【詳解】解:①對頂角有位置及大小關(guān)系的要求,相等的角不一定是對頂角,故為假命題;②只有當兩條平行直線被第三條直線所截,同位角相等,故為假命題;③正五邊形的內(nèi)角和為540°,則其內(nèi)角為108°,而360°并不是108°的整數(shù)倍,不能進行平面鑲嵌,故為假命題;④在同一平面內(nèi),垂直于同一條直線的兩條直線平行,故為假命題.故選:D.【點睛】本題考查了命題與證明.對頂角,垂線,同位角,鑲嵌的相關(guān)概念.關(guān)鍵是熟悉這些概念,正確判斷.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、8.03×106【解析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).803萬=.14、1:1.【解析】試題分析:由DE∥BC,可得△ADE∽△ABC,根據(jù)相似三角形的面積之比等于相似比的平方可得S△ADE:S△ABC=(AD:AB)2=1:1.考點:相似三角形的性質(zhì).15、1【解析】

由兩圓的半徑分別為2和5,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系和兩圓位置關(guān)系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內(nèi)切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點睛】此題考查了圓與圓的位置關(guān)系.解題的關(guān)鍵是掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.16、1:1【解析】

根據(jù)題意得到BE:EC=1:3,證明△BED∽△BCA,根據(jù)相似三角形的性質(zhì)計算即可.【詳解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3,∵DE∥AC,∴△BED∽△BCA,∴S△BDE:S△BCA=()2=1:16,∴S△BDE:S四邊形DECA=1:1,故答案為1:1.【點睛】本題考查的是相似三角形的判定和性質(zhì),掌握相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.17、-2<x<-1或x>1.【解析】不等式的圖象解法,平移的性質(zhì),反比例函數(shù)與一次函數(shù)的交點問題,對稱的性質(zhì).不等式k1x<+b的解集即k1x-b<的解集,根據(jù)不等式與直線和雙曲線解析式的關(guān)系,可以理解為直線y=k1x-b在雙曲線下方的自變量x的取值范圍即可.而直線y=k1x-b的圖象可以由y=k1x+b向下平移2b個單位得到,如圖所示.根據(jù)函數(shù)圖象的對稱性可得:直線y=k1x-b和y=k1x+b與雙曲線的交點坐標關(guān)于原點對稱.由關(guān)于原點對稱的坐標點性質(zhì),直線y=k1x-b圖象與雙曲線圖象交點A′、B′的橫坐標為A、B兩點橫坐標的相反數(shù),即為-1,-2.∴由圖知,當-2<x<-1或x>1時,直線y=k1x-b圖象在雙曲線圖象下方.∴不等式k1x<+b的解集是-2<x<-1或x>1.18、到線段兩端距離相等的點在線段的垂直平分線上或兩點確定一條直線或sss或全等三角形對應角相等或等腰三角形的三線合一【解析】

從作圖方法以及作圖結(jié)果入手考慮其作圖依據(jù)..【詳解】解:依題意,AP=AM,BP=BM,根據(jù)垂直平分線的定義可知PM⊥直線l.因此易知小艾的作圖依據(jù)是到線段兩端距離相等的點在線段的垂直平分線上;兩點確定一條直線.故答案為到線段兩端距離相等的點在線段的垂直平分線上;兩點確定一條直線.【點睛】本題主要考查尺規(guī)作圖,掌握尺規(guī)作圖的常用方法是解題關(guān)鍵.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)A(﹣4,0),B(3,0);(2);(3).【解析】

(1)設y=0,可求x的值,即求A,B的坐標;(2)作MD⊥x軸,由CO∥MD可得OD=3,把x=-3代入解析式可得M點坐標,可得ON的長度,根據(jù)S△BMC=,可求a的值;(3)過M點作ME∥AB,設NO=m,=k,可以用m,k表示CO,EO,MD,ME,可求M點坐標,代入可得k,m,a的關(guān)系式,由CO=2km+m=-12a,可得方程組,解得k,即可求結(jié)果.【詳解】(1)設y=0,則0=ax2+ax﹣12a(a<0),∴x1=﹣4,x2=3,∴A(﹣4,0),B(3,0)(2)如圖1,作MD⊥x軸,∵MD⊥x軸,OC⊥x軸,∴MD∥OC,∴=且NB=MN,∴OB=OD=3,∴D(﹣3,0),∴當x=﹣3時,y=﹣6a,∴M(﹣3,﹣6a),∴MD=﹣6a,∵ON∥MD∴,∴ON=﹣3a,根據(jù)題意得:C(0,﹣12a),∵S△MBC=,∴(﹣12a+3a)×6=,a=﹣,(3)如圖2:過M點作ME∥AB,∵ME∥AB,∴∠EMB=∠ABM且∠CMB=2∠ABM,∴∠CME=∠NME,且ME=ME,∠CEM=∠NEM=90°,∴△CME≌△MNE,∴CE=EN,設NO=m,=k(k>0),∵ME∥AB,∴==k,∴ME=3k,EN=km=CE,∴EO=km+m,CO=CE+EN+ON=2km+m=﹣12a,即,∴M(﹣3k,km+m),∴km+m=a(9k2﹣3k﹣12),(k+1)×=(k+1)(9k﹣12),∴=9k-12,∴k=,∴.【點睛】本題考查的知識點是函數(shù)解析式的求法,二次函數(shù)的圖象和性質(zhì),是二次函數(shù)與解析幾何知識的綜合應用,難度較大.20、x=15,y=1【解析】

根據(jù)概率的求法:在圍棋盒中有x顆黑色棋子和y顆白色棋子,共x+y顆棋子,如果它是黑色棋子的概率是,有成立.化簡可得y與x的函數(shù)關(guān)系式;

(2)若往盒中再放進10顆黑色棋子,在盒中有10+x+y顆棋子,則取得黑色棋子的概率變?yōu)椋Y(jié)合(1)的條件,可得,解可得x=15,y=1.【詳解】依題意得,,化簡得,,解得,.,檢驗當x=15,y=1時,,,∴x=15,y=1是原方程的解,經(jīng)檢驗,符合題意.答:x=15,y=1.【點睛】此題考查概率的求法:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結(jié)果,那么事件A的概率P(A)=.21、(1)25,90°;(2)見解析;(3)該市“活動時間不少于5天”的大約有1.【解析】試題分析:(1)根據(jù)扇形統(tǒng)計圖的特征即可求得的值,再乘以360°即得扇形的圓心角;(2)先算出總?cè)藬?shù),再乘以“活動時間為6天”對應的百分比即得對應的人數(shù);(3)先求得“活動時間不少于5天”的學生人數(shù)的百分比,再乘以20000即可.(1)由圖可得該扇形圓心角的度數(shù)為90°;(2)“活動時間為6天”的人數(shù),如圖所示:(3)∵“活動時間不少于5天”的學生人數(shù)占75%,20000×75%=1∴該市“活動時間不少于5天”的大約有1人.考點:統(tǒng)計的應用點評:統(tǒng)計的應用初中數(shù)學的重點,在中考中極為常見,一般難度不大.22、(1)拋物線的解析式為;(2)PM=(0<m<3);(3)存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.【解析】

(1)將A(3,0),C(0,4)代入,運用待定系數(shù)法即可求出拋物線的解析式.(2)先根據(jù)A、C的坐標,用待定系數(shù)法求出直線AC的解析式,從而根據(jù)拋物線和直線AC的解析式分別表示出點P、點M的坐標,即可得到PM的長.(3)由于∠PFC和∠AEM都是直角,F(xiàn)和E對應,則若以P、C、F為頂點的三角形和△AEM相似時,分兩種情況進行討論:①△PFC∽△AEM,②△CFP∽△AEM;可分別用含m的代數(shù)式表示出AE、EM、CF、PF的長,根據(jù)相似三角形對應邊的比相等列出比例式,求出m的值,再根據(jù)相似三角形的性質(zhì),直角三角形、等腰三角形的判定判斷出△PCM的形狀.【詳解】解:(1)∵拋物線(a≠0)經(jīng)過點A(3,0),點C(0,4),∴,解得.∴拋物線的解析式為.(2)設直線AC的解析式為y=kx+b,∵A(3,0),點C(0,4),∴,解得.∴直線AC的解析式為.∵點M的橫坐標為m,點M在AC上,∴M點的坐標為(m,).∵點P的橫坐標為m,點P在拋物線上,∴點P的坐標為(m,).∴PM=PE-ME=()-()=.∴PM=(0<m<3).(3)在(2)的條件下,連接PC,在CD上方的拋物線部分存在這樣的點P,使得以P、C、F為頂點的三角形和△AEM相似.理由如下:由題意,可得AE=3﹣m,EM=,CF=m,PF==,若以P、C、F為頂點的三角形和△AEM相似,分兩種情況:①若△PFC∽△AEM,則PF:AE=FC:EM,即():(3-m)=m:(),∵m≠0且m≠3,∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME.∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF中,∵∠CMF+∠MCF=90°,∴∠PCF+∠MCF=90°,即∠PCM=90°.∴△PCM為直角三角形.②若△CFP∽△AEM,則CF:AE=PF:EM,即m:(3-m)=():(),∵m≠0且m≠3,∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME.∵∠AME=∠CMF,∴∠CPF=∠CMF.∴CP=CM.∴△PCM為等腰三角形.綜上所述,存在這樣的點P使△PFC與△AEM相似.此時m的值為或1,△PCM為直角三角形或等腰三角形.23、AB≈3.93m.【解析】

想求得AB長,由等腰三角形的三線合一定理可知AB=2AD,求得AD即可,而AD可以利用∠A的三角函數(shù)可以求出.【詳解】∵AC=BC,D是AB的中點,∴CD⊥AB,又∵CD=1米,∠A=27°,∴AD=CD÷tan27°≈1.96,∴AB=2AD,∴AB≈3.93m.【點睛】本題考查了三角函數(shù),直角三角形,等腰三角形等知識,關(guān)鍵利用了正切函數(shù)的定義求出AD,然后就可以求出AB.24、米.【解析】試題分析:根據(jù)矩形的性質(zhì),得到對邊相等,設這條河寬為x米,則根據(jù)特殊角的三角函數(shù)值,可以表示出ED和BF,根據(jù)EC=ED+CD,AF=AB+BF,列出等式方程,求解即可.試題解析:作AE⊥PQ于E,CF⊥MN于F.∵PQ∥MN,∴四邊形AECF為矩形,∴EC=AF,AE=CF.設這條河寬為x米,∴AE=CF=x.在Rt△AED中,∵PQ∥MN,∴在Rt△BCF中,∵EC=ED+CD,AF=AB+BF,解得∴這條河的寬為米.25、(1)①當1<x<3或x>5時,函數(shù)?的值y隨x的增大而增大,②P(,);(2)當3≤h≤4或h≤0時,函數(shù)f的值隨x的增大而增大.【解析】試題分析:(1)①利用待定系數(shù)法求拋物線的解析式,由對稱性求點B的坐標,根據(jù)圖象寫出函數(shù)?的值y隨x的增大而增大(即呈上升趨勢)的x的取值;②如圖2,作輔助線,構(gòu)建對稱點F和直角角三角形AQE,根據(jù)S△ABQ=2S△ABP,得QE=2PD,證明△PAD∽△QAE,則,得AE=2AD,設AD=a,根據(jù)QE=2FD列方程可求得a的值,并計算P的坐標;(2)先令y=0求拋物線與x軸的兩個交點坐標,根據(jù)圖象中呈上升趨勢的部分,有兩部分:分別討論,并列不等式或不等式組可得h的取值.試題解析:(1)①把A(1,0)代入拋物線y=(x﹣h)2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵點A在點B的左側(cè),∴h>0,∴h=3,∴拋物線l的表達式為:y=(x﹣3)2﹣2,∴拋物線的對稱軸是:直線x=3,由對稱性得:B(5,0),由圖象可知:當1<x<3或x>5時,函數(shù)?的值y隨x的增大而增大;②如圖2,作PD⊥x軸于點D,延長PD交拋物線l于點F,作QE⊥x軸于E,則PD∥QE,由對稱性得:DF=PD,∵S△ABQ=2S△ABP,∴AB?QE=2×AB?PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,設AD=a,則OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵點F、Q在拋物線l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)當y=0時,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵點A在點B的左側(cè),且h>0,∴A(h﹣2,0),B(h+2,0),如圖3,作拋物線的對稱軸交拋物線于點C,分兩種情況:①由圖象可知:圖象f在AC段時,函數(shù)f的值隨x的增大而增大,則,∴3≤h≤4,②由圖象可知:圖象f點B的右側(cè)時,函數(shù)f的值隨x的增大而增大,即:h+2≤2,h≤0,綜上所述,當3≤h≤4或h≤0時,函數(shù)f的值隨x的增大而增大.考點:待定系數(shù)法求二次函數(shù)的解析式;二次函數(shù)的增減性問題、三角形相似的性質(zhì)和判定;一元二次方程;一元一次不等式組.26、(1)y1=20x+540,y2=10x+1;(2)去年4月銷售該配件的利潤最大,最大利潤為450萬元.【解析】

(1)利用待定系數(shù)法,結(jié)合圖象上點的坐標求出一次函數(shù)解析式即可;(2)根據(jù)生產(chǎn)每件配件的人力成本為50元,其它成本30元,以及售價銷量進而求出最大利潤.【詳解】(1)利用表格得出函數(shù)關(guān)系是一次函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論