版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
廣東省廣州市天河外國語校2022年初中數(shù)學(xué)畢業(yè)考試模擬沖刺卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖,矩形ABCD的對角線AC,BD相交于點O,點M是AB的中點,若OM=4,AB=6,則BD的長為()A.4 B.5 C.8 D.102.二次函數(shù)y=﹣(x+2)2﹣1的圖象的對稱軸是()A.直線x=1 B.直線x=﹣1 C.直線x=2 D.直線x=﹣23.下面的幾何體中,主視圖為圓的是()A. B. C. D.4.如圖,甲從A點出發(fā)向北偏東70°方向走到點B,乙從點A出發(fā)向南偏西15°方向走到點C,則∠BAC的度數(shù)是()A.85° B.105° C.125° D.160°5.根據(jù)下表中的二次函數(shù)的自變量與函數(shù)的對應(yīng)值,可判斷該二次函數(shù)的圖象與軸().
…
…
…
…A.只有一個交點 B.有兩個交點,且它們分別在軸兩側(cè)C.有兩個交點,且它們均在軸同側(cè) D.無交點6.隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結(jié)論正確的是()A.①的收入去年和前年相同B.③的收入所占比例前年的比去年的大C.去年②的收入為2.8萬D.前年年收入不止①②③三種農(nóng)作物的收入7.在平面直角坐標(biāo)系中,點是線段上一點,以原點為位似中心把放大到原來的兩倍,則點的對應(yīng)點的坐標(biāo)為()A. B.或C. D.或8.多項式4a﹣a3分解因式的結(jié)果是()A.a(chǎn)(4﹣a2)B.a(chǎn)(2﹣a)(2+a)C.a(chǎn)(a﹣2)(a+2)D.a(chǎn)(2﹣a)29.如圖,在正方形ABCD中,AB=,P為對角線AC上的動點,PQ⊥AC交折線A﹣D﹣C于點Q,設(shè)AP=x,△APQ的面積為y,則y與x的函數(shù)圖象正確的是()A. B.C. D.10.解分式方程時,去分母后變形為A. B.C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將一塊含有30°角的直角三角板的兩個頂點疊放在長方形的兩條對邊上,如果∠1=27°,那么∠2=______°12.如圖,在△ABC中,DE∥BC,,則=_____.13.含45°角的直角三角板如圖放置在平面直角坐標(biāo)系中,其中A(-2,0),B(0,1),則直線BC的解析式為______.14.二次函數(shù)的圖象與y軸的交點坐標(biāo)是________.15.在反比例函數(shù)圖象的每一支上,y隨x的增大而______用“增大”或“減小”填空.16.如圖,網(wǎng)格中的四個格點組成菱形ABCD,則tan∠DBC的值為___________.17.有三個大小一樣的正六邊形,可按下列方式進(jìn)行拼接:方式1:如圖1;方式2:如圖2;若有四個邊長均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長是_______.有個邊長均為1的正六邊形,采用上述兩種方式的一種或兩種方式混合拼接,若得圖案的外輪廓的周長為18,則的最大值為__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點,與x軸交于點C,與y軸交于點D,已知OA=,tan∠AOC=(1)求a,k的值及點B的坐標(biāo);(2)觀察圖象,請直接寫出不等式ax﹣1≥的解集;(3)在y軸上存在一點P,使得△PDC與△ODC相似,請你求出P點的坐標(biāo).19.(5分)如圖,矩形ABCD中,E是AD的中點,延長CE,BA交于點F,連接AC,DF.求證:四邊形ACDF是平行四邊形;當(dāng)CF平分∠BCD時,寫出BC與CD的數(shù)量關(guān)系,并說明理由.20.(8分)某快餐店試銷某種套餐,試銷一段時間后發(fā)現(xiàn),每份套餐的成本為5元,該店每天固定支出費用為600元(不含套餐成本).若每份套餐售價不超過10元,每天可銷售400份;若每份套餐售價超過10元,每提高1元,每天的銷售量就減少40份.為了便于結(jié)算,每份套餐的售價(元)取整數(shù),用(元)表示該店每天的利潤.若每份套餐售價不超過10元.①試寫出與的函數(shù)關(guān)系式;②若要使該店每天的利潤不少于800元,則每份套餐的售價應(yīng)不低于多少元?該店把每份套餐的售價提高到10元以上,每天的利潤能否達(dá)到1560元?若能,求出每份套餐的售價應(yīng)定為多少元時,既能保證利潤又能吸引顧客?若不能,請說明理由.21.(10分)()如圖①已知四邊形中,,BC=b,,求:①對角線長度的最大值;②四邊形的最大面積;(用含,的代數(shù)式表示)()如圖②,四邊形是某市規(guī)劃用地的示意圖,經(jīng)測量得到如下數(shù)據(jù):,,,,請你利用所學(xué)知識探索它的最大面積(結(jié)果保留根號)22.(10分)如圖,拋物線y=x2+bx+c與x軸交于A、B兩點,與y軸交于點C,其對稱軸交拋物線于點D,交x軸于點E,已知OB=OC=1.(1)求拋物線的解析式及點D的坐標(biāo);(2)連接BD,F(xiàn)為拋物線上一動點,當(dāng)∠FAB=∠EDB時,求點F的坐標(biāo);(3)平行于x軸的直線交拋物線于M、N兩點,以線段MN為對角線作菱形MPNQ,當(dāng)點P在x軸上,且PQ=MN時,求菱形對角線MN的長.23.(12分)為了解某校九年級男生的體能情況,體育老師隨機(jī)抽取部分男生進(jìn)行引體向上測試,并對成績進(jìn)行了統(tǒng)計,繪制出如下的統(tǒng)計圖①和圖②,請跟進(jìn)相關(guān)信息,解答下列問題:(1)本次抽測的男生人數(shù)為,圖①中m的值為;(2)求本次抽測的這組數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);(3)若規(guī)定引體向上5次以上(含5次)為體能達(dá)標(biāo),根據(jù)樣本數(shù)據(jù),估計該校350名九年級男生中有多少人體能達(dá)標(biāo).24.(14分)如圖,對稱軸為直線的拋物線與x軸相交于A、B兩點,其中A點的坐標(biāo)為(-3,0).(1)求點B的坐標(biāo);(2)已知,C為拋物線與y軸的交點.①若點P在拋物線上,且,求點P的坐標(biāo);②設(shè)點Q是線段AC上的動點,作QD⊥x軸交拋物線于點D,求線段QD長度的最大值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】
利用三角形中位線定理求得AD的長度,然后由勾股定理來求BD的長度.【詳解】解:∵矩形ABCD的對角線AC,BD相交于點O,
∴∠BAD=90°,點O是線段BD的中點,
∵點M是AB的中點,
∴OM是△ABD的中位線,
∴AD=2OM=1.
∴在直角△ABD中,由勾股定理知:BD=.
故選:D.【點睛】本題考查了三角形中位線定理和矩形的性質(zhì),利用三角形中位線定理求得AD的長度是解題的關(guān)鍵.2、D【解析】
根據(jù)二次函數(shù)頂點式的性質(zhì)解答即可.【詳解】∵y=﹣(x+2)2﹣1是頂點式,∴對稱軸是:x=-2,故選D.【點睛】本題考查二次函數(shù)頂點式y(tǒng)=a(x-h)2+k的性質(zhì),對稱軸為x=h,頂點坐標(biāo)為(h,k)熟練掌握頂點式的性質(zhì)是解題關(guān)鍵.3、C【解析】試題解析:A、的主視圖是矩形,故A不符合題意;B、的主視圖是正方形,故B不符合題意;C、的主視圖是圓,故C符合題意;D、的主視圖是三角形,故D不符合題意;故選C.考點:簡單幾何體的三視圖.4、C【解析】
首先求得AB與正東方向的夾角的度數(shù),即可求解.【詳解】根據(jù)題意得:∠BAC=(90°﹣70°)+15°+90°=125°,故選:C.【點睛】本題考查了方向角,正確理解方向角的定義是關(guān)鍵.5、B【解析】
根據(jù)表中數(shù)據(jù)可得拋物線的對稱軸為x=1,拋物線的開口方向向上,再根據(jù)拋物線的對稱性即可作出判斷.【詳解】解:由題意得拋物線的對稱軸為x=1,拋物線的開口方向向上則該二次函數(shù)的圖像與軸有兩個交點,且它們分別在軸兩側(cè)故選B.【點睛】本題考查二次函數(shù)的性質(zhì),屬于基礎(chǔ)應(yīng)用題,只需學(xué)生熟練掌握拋物線的對稱性,即可完成.6、C【解析】
A、前年①的收入為60000×=19500,去年①的收入為80000×=26000,此選項錯誤;B、前年③的收入所占比例為×100%=30%,去年③的收入所占比例為×100%=32.5%,此選項錯誤;C、去年②的收入為80000×=28000=2.8(萬元),此選項正確;D、前年年收入即為①②③三種農(nóng)作物的收入,此選項錯誤,故選C.【點睛】本題主要考查扇形統(tǒng)計圖,解題的關(guān)鍵是掌握扇形統(tǒng)計圖是用整個圓表示總數(shù)用圓內(nèi)各個扇形的大小表示各部分?jǐn)?shù)量占總數(shù)的百分?jǐn)?shù),并且通過扇形統(tǒng)計圖可以很清楚地表示出各部分?jǐn)?shù)量同總數(shù)之間的關(guān)系.7、B【解析】分析:根據(jù)位似變換的性質(zhì)計算即可.詳解:點P(m,n)是線段AB上一點,以原點O為位似中心把△AOB放大到原來的兩倍,則點P的對應(yīng)點的坐標(biāo)為(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),故選B.點睛:本題考查的是位似變換、坐標(biāo)與圖形的性質(zhì),在平面直角坐標(biāo)系中,如果位似變換是以原點為位似中心,相似比為k,那么位似圖形對應(yīng)點的坐標(biāo)的比等于k或-k.8、B【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.【詳解】4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).故選:B.【點睛】此題主要考查了提取公因式法以及公式法分解因式,正確運用公式是解題關(guān)鍵.9、B【解析】∵在正方形ABCD中,AB=,∴AC=4,AD=DC=,∠DAP=∠DCA=45o,當(dāng)點Q在AD上時,PA=PQ,∴DP=AP=x,∴S=;當(dāng)點Q在DC上時,PC=PQCP=4-x,∴S=;所以該函數(shù)圖象前半部分是拋物線開口向上,后半部分也為拋物線開口向下,故選B.【點睛】本題考查動點問題的函數(shù)圖象,有一定難度,解題關(guān)鍵是注意點Q在AP、DC上這兩種情況.10、D【解析】試題分析:方程,兩邊都乘以x-1去分母后得:2-(x+2)=3(x-1),故選D.考點:解分式方程的步驟.二、填空題(共7小題,每小題3分,滿分21分)11、57°.【解析】
根據(jù)平行線的性質(zhì)和三角形外角的性質(zhì)即可求解.【詳解】由平行線性質(zhì)及外角定理,可得∠2=∠1+30°=27°+30°=57°.【點睛】本題考查平行線的性質(zhì)及三角形外角的性質(zhì).12、【解析】
先利用平行條件證明三角形的相似,再利用相似三角形面積比等于相似比的平方,即可解題.【詳解】解:∵DE∥BC,,∴,由平行條件易證△ADE△ABC,∴S△ADE:S△ABC=1:9,∴=.【點睛】本題考查了相似三角形的判定和性質(zhì),中等難度,熟記相似三角形的面積比等于相似比的平方是解題關(guān)鍵.13、【解析】
過C作CD⊥x軸于點D,則可證得△AOB≌△CDA,可求得CD和OD的長,可求得C點坐標(biāo),利用待定系數(shù)法可求得直線BC的解析式.【詳解】如圖,過C作CD⊥x軸于點D.∵∠CAB=90°,∴∠DAC+∠BAO=∠BAO+∠ABO=90°,∴∠DAC=∠ABO.在△AOB和△CDA中,∵,∴△AOB≌△CDA(AAS).∵A(﹣2,0),B(0,1),∴AD=BO=1,CD=AO=2,∴C(﹣3,2),設(shè)直線BC解析式為y=kx+b,∴,解得:,∴直線BC解析式為yx+1.故答案為yx+1.【點睛】本題考查了待定系數(shù)法及全等三角形的判定和性質(zhì),構(gòu)造全等三角形求得C點坐標(biāo)是解題的關(guān)鍵.14、【解析】
求出自變量x為1時的函數(shù)值即可得到二次函數(shù)的圖象與y軸的交點坐標(biāo).【詳解】把代入得:,∴該二次函數(shù)的圖象與y軸的交點坐標(biāo)為,故答案為.【點睛】本題考查了二次函數(shù)圖象上點的坐標(biāo)特征,在y軸上的點的橫坐標(biāo)為1.15、減小【解析】
根據(jù)反比例函數(shù)的性質(zhì),依據(jù)比例系數(shù)k的符號即可確定.【詳解】∵k=2>0,∴y隨x的增大而減?。蚀鸢甘牵簻p?。军c睛】本題考查了反比例函數(shù)的性質(zhì),反比例函數(shù)y=(k≠0)的圖象是雙曲線,當(dāng)k>0,雙曲線的兩支分別位于第一、第三象限,在每一象限內(nèi)y隨x的增大而減??;(3)當(dāng)k<0,雙曲線的兩支分別位于第二、第四象限,在每一象限內(nèi)y隨x的增大而增大.16、3【解析】試題分析:如圖,連接AC與BD相交于點O,∵四邊形ABCD是菱形,∴AC⊥BD,BO=BD,CO=AC,由勾股定理得,AC==,BD==,所以,BO==,CO==,所以,tan∠DBC===3.故答案為3.考點:3.菱形的性質(zhì);3.解直角三角形;3.網(wǎng)格型.17、181【解析】
有四個邊長均為1的正六邊形,采用方式1拼接,利用4n+2的規(guī)律計算;把六個正六邊形圍著一個正六邊按照方式2進(jìn)行拼接可使周長為8,六邊形的個數(shù)最多.【詳解】解:有四個邊長均為1的正六邊形,采用方式1拼接,所得圖案的外輪廓的周長為4×4+2=18;按下圖拼接,圖案的外輪廓的周長為18,此時正六邊形的個數(shù)最多,即n的最大值為1.故答案為:18;1.【點睛】本題考查了正多邊形和圓,以及圖形的變化類規(guī)律總結(jié)問題,根據(jù)題意,得出規(guī)律是解決此題的關(guān)鍵.三、解答題(共7小題,滿分69分)18、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】
1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,根據(jù)tan∠AOC的值,設(shè)AE=x,得到OE=3x,再由OA的長,利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出A坐標(biāo),將A坐標(biāo)代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標(biāo);(2)由A與B交點橫坐標(biāo),根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時,滿足△PDC與△ODC相似;當(dāng)PC⊥CD,即∠PCD=時,滿足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對角相等,再由一對直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長求出OP的長,即可確定出P的坐標(biāo).【詳解】解:(1)過A作AE⊥x軸,交x軸于點E,在Rt△AOE中,OA=,tan∠AOC=,設(shè)AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標(biāo)代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標(biāo)代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時,△PDC∽△ODC;當(dāng)PC⊥CD,即∠PCD=90°時,∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時P坐標(biāo)為(0,),綜上,滿足題意P的坐標(biāo)為(0,)或(0,0).【點睛】此題屬于反比例函數(shù)綜合題,涉及的知識有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點問題,坐標(biāo)與圖形性質(zhì),勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質(zhì),利用了數(shù)形結(jié)合的思想,熟練運用數(shù)形結(jié)合思想是解題的關(guān)鍵.19、(1)證明見解析;(2)BC=2CD,理由見解析.【解析】分析:(1)利用矩形的性質(zhì),即可判定△FAE≌△CDE,即可得到CD=FA,再根據(jù)CD∥AF,即可得出四邊形ACDF是平行四邊形;(2)先判定△CDE是等腰直角三角形,可得CD=DE,再根據(jù)E是AD的中點,可得AD=2CD,依據(jù)AD=BC,即可得到BC=2CD.詳解:(1)∵四邊形ABCD是矩形,∴AB∥CD,∴∠FAE=∠CDE,∵E是AD的中點,∴AE=DE,又∵∠FEA=∠CED,∴△FAE≌△CDE,∴CD=FA,又∵CD∥AF,∴四邊形ACDF是平行四邊形;(2)BC=2CD.證明:∵CF平分∠BCD,∴∠DCE=45°,∵∠CDE=90°,∴△CDE是等腰直角三角形,∴CD=DE,∵E是AD的中點,∴AD=2CD,∵AD=BC,∴BC=2CD.點睛:本題主要考查了矩形的性質(zhì)以及平行四邊形的判定與性質(zhì),要證明兩直線平行和兩線段相等、兩角相等,可考慮將要證的直線、線段、角、分別置于一個四邊形的對邊或?qū)堑奈恢蒙?,通過證明四邊形是平行四邊形達(dá)到上述目的.20、(1)①y=400x﹣1.(5<x≤10);②9元或10元;(2)能,11元.【解析】
(1)、根據(jù)利潤=(售價-進(jìn)價)×數(shù)量-固定支出列出函數(shù)表達(dá)式;(2)、根據(jù)題意得出不等式,從而得出答案;(2)、根據(jù)題意得出函數(shù)關(guān)系式,然后將y=1560代入函數(shù)解析式,從而求出x的值得出答案.【詳解】解:(1)①y=400(x﹣5)﹣2.(5<x≤10),②依題意得:400(x﹣5)﹣2≥800,解得:x≥8.5,∵5<x≤10,且每份套餐的售價x(元)取整數(shù),∴每份套餐的售價應(yīng)不低于9元.(2)依題意可知:每份套餐售價提高到10元以上時,y=(x﹣5)[400﹣40(x﹣10)]﹣2,當(dāng)y=1560時,(x﹣5)[400﹣40(x﹣10)]﹣2=1560,解得:x1=11,x2=14,為了保證凈收入又能吸引顧客,應(yīng)取x1=11,即x2=14不符合題意.故該套餐售價應(yīng)定為11元.【點睛】本題主要考查的是一次函數(shù)和二次函數(shù)的實際應(yīng)用問題,屬于中等難度的題型.理解題意,列出關(guān)系式是解決這個問題的關(guān)鍵.21、(1)①;②;(2)150+475+475.【解析】
(1)①由條件可知AC為直徑,可知BD長度的最大值為AC的長,可求得答案;②連接AC,求得AD2+CD2,利用不等式的性質(zhì)可求得AD?CD的最大值,從而可求得四邊形ABCD面積的最大值;(2)連接AC,延長CB,過點A做AE⊥CB交CB的延長線于E,可先求得△ABC的面積,結(jié)合條件可求得∠D=45°,且A、C、D三點共圓,作AC、CD中垂線,交點即為圓心O,當(dāng)點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D',交AC于F,F(xiàn)D'即為所求最大值,再求得
△ACD′的面積即可.【詳解】(1)①因為∠B=∠D=90°,所以四邊形ABCD是圓內(nèi)接四邊形,AC為圓的直徑,則BD長度的最大值為AC,此時BD=,②連接AC,則AC2=AB2+BC2=a2+b2=AD2+CD2,S△ACD=ADCD≤(AD2+CD2)=(a2+b2),所以四邊形ABCD的最大面積=(a2+b2)+ab=;(2)如圖,連接AC,延長CB,過點A作AE⊥CB交CB的延長線于E,因為AB=20,∠ABE=180°-∠ABC=60°,所以AE=ABsin60°=10,EB=ABcos60°=10,S△ABC=AEBC=150,因為BC=30,所以EC=EB+BC=40,AC==10,因為∠ABC=120°,∠BAD+∠BCD=195°,所以∠D=45°,則△ACD中,∠D為定角,對邊AC為定邊,所以,A、C、D點在同一個圓上,做AC、CD中垂線,交點即為圓O,如圖,當(dāng)點D與AC的距離最大時,△ACD的面積最大,AC的中垂線交圓O于點D’,交AC于F,F(xiàn)D’即為所求最大值,連接OA、OC,∠AOC=2∠AD’C=90°,OA=OC,所以△AOC,△AOF等腰直角三角形,AO=OD’=5,OF=AF==5,D’F=5+5,S△ACD’=ACD’F=5×(5+5)=475+475,所以Smax=S△ABC+S△ACD=150+475+475.【點睛】本題為圓的綜合應(yīng)用,涉及知識點有圓周角定理、不等式的性質(zhì)、解直角三角形及轉(zhuǎn)化思想等.在(1)中注意直徑是最長的弦,在(2)中確定出四邊形ABCD面積最大時,D點的位置是解題的關(guān)鍵.本題考查知識點較多,綜合性很強(qiáng),計算量很大,難度適中.22、(1),點D的坐標(biāo)為(2,-8)(2)點F的坐標(biāo)為(7,)或(5,)(3)菱形對角線MN的長為或.【解析】分析:(1)利用待定系數(shù)法,列方程求二次函數(shù)解析式.(2)利用解析法,∠FAB=∠EDB,tan∠FAG=tan∠BDE,求出F點坐標(biāo).(3)分類討論,當(dāng)MN在x軸上方時,在x軸下方時分別計算MN.詳解:(1)∵OB=OC=1,∴B(1,0),C(0,-1).∴,解得,∴拋物線的解析式為.∵=,∴點D的坐標(biāo)為(2,-8).(2)如圖,當(dāng)點F在x軸上方時,設(shè)點F的坐標(biāo)為(x,).過點F作FG⊥x軸于點G,易求得OA=2,則AG=x+2,F(xiàn)G=.∵∠FAB=∠EDB,∴tan∠FAG=tan∠BDE,即,解得,(舍去).當(dāng)x=7時,y=,∴點F的坐標(biāo)為(7,).當(dāng)點F在x軸下方時,設(shè)同理求得點F的坐標(biāo)為(5,).綜上所述,點F的坐標(biāo)為(7,)或(5,).(3)∵點P在x軸上,∴根據(jù)菱形的對稱性可知點P的坐標(biāo)為(2,0).如圖,當(dāng)MN在x軸上方時,設(shè)T為菱形對角線的交點.∵PQ=MN,∴MT=2PT.設(shè)TP=n,則MT=2n.∴M(2+2n,n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.當(dāng)MN在x軸下方時,設(shè)TP=n,得M(2+2n,-n).∵點M在拋物線上,∴,即.解得,(舍去).∴MN=2MT=4n=.綜上所述,菱形對角線MN的長為或.點睛:1.求二次函數(shù)的解析式(1)已知二次函數(shù)過三個點,利用一般式,y=ax2+bx+c().列方程組求二次函數(shù)解析式.(2)已知二次函數(shù)與x軸的兩個交點(,利用雙根式,y=()求二次函數(shù)解析式,而且此時對稱軸方程過交點的中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025房屋修繕合同范本
- 2025集資房買賣合同范本大全
- 2025其它合同比賽贊助協(xié)議書
- 2025企業(yè)的贈與合同范文
- 2025攝影拍攝合同范文
- 倉儲物流中心施工合同范本
- 購物中心植物擺放租賃合同
- 醫(yī)院高級病房管家服務(wù)合同
- 鄉(xiāng)村公路更新項目合同
- 民航機(jī)場便道建設(shè)維修合同
- 漢字文化解密學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 國家開放大學(xué)電大本科《工程經(jīng)濟(jì)與管理》2023-2024期末試題及答案(試卷號:1141)
- TBT3134-2023機(jī)車車輛驅(qū)動齒輪箱 技術(shù)要求
- 供熱企業(yè)安全風(fēng)險隱患辨識清單
- 矩形沉井計算表格(自動版)
- 滬教牛津版五年級下冊英語全冊課件
- 湘藝版 四年級上冊音樂教案- 第十課 我心愛的小馬車
- 前置胎盤的手術(shù)配合課件
- 魚骨圖模板1PPT課件
- 中國動畫之經(jīng)典賞析PPT課件
- 施工現(xiàn)場節(jié)電方法
評論
0/150
提交評論