版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省延邊市第二中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末達(dá)標(biāo)檢測試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.中,則A. B. C. D.2.以點和為直徑兩端點的圓的方程是()A. B.C. D.3.在中,,,是邊的中點.為所在平面內(nèi)一點且滿足,則的值為()A. B. C. D.4.已知向量,且,則()A.2 B. C. D.5.已知直線,與互相垂直,則的值是()A. B.或 C. D.或6.若是異面直線,直線,則與的位置關(guān)系是()A.相交 B.異面 C.平行 D.異面或相交7.某幾何體的三視圖如圖所示,其外接球體積為()A. B. C. D.8.我國魏晉時期的數(shù)學(xué)家劉徽,創(chuàng)立了用圓內(nèi)接正多邊形面積無限逼近圓面積的方法,稱為“割圓術(shù)”,為圓周率的研究提供了科學(xué)的方法.在半徑為1的圓內(nèi)任取一點,則該點取自圓內(nèi)接正十二邊形外的概率為A. B.C. D.9.記為等差數(shù)列的前n項和.若,,則等差數(shù)列的公差為()A.1 B.2 C.4 D.810.已知則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知a,b為常數(shù),若,則______;12.已知的三邊分別是,且面積,則角__________.13.函數(shù)的反函數(shù)為____________.14.直線的傾斜角的大小是_________.15.已知扇形的半徑為6,圓心角為,則扇形的弧長為______.16.已知向量,的夾角為,若,,則________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù),其中常數(shù);(1)令,判定函數(shù)的奇偶性,并說明理由;(2)令,將函數(shù)圖像向右平移個單位,再向上平移1個單位,得到函數(shù)的圖像,對任意,求在區(qū)間上零點個數(shù)的所有可能值;18.已知是圓的直徑,垂直圓所在的平面,是圓上任一點.求證:平面⊥平面.19.正四棱錐S-ABCD的底面邊長為2,側(cè)棱長為x.(1)求出其表面積S(x)和體積V(x);(2)設(shè),求出函數(shù)的定義域,并判斷其單調(diào)性(無需證明).20.設(shè)數(shù)列的前項和為,點均在函數(shù)的圖像上.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),是數(shù)列的前項和,求使得對所有都成立的最小正整數(shù).21.中,角的對邊分別為,且.(I)求的值;(II)求的值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】試題分析:由余弦定理,故選擇B考點:余弦定理2、A【解析】
可根據(jù)已知點直接求圓心和半徑.【詳解】點和的中點是圓心,圓心坐標(biāo)是,點和間的距離是直徑,,即,圓的方程是.故選A.【點睛】本題考查了圓的標(biāo)準(zhǔn)方程的求法,屬于基礎(chǔ)題型.3、D【解析】
根據(jù)平面向量基本定理可知,將所求數(shù)量積化為;由模長的等量關(guān)系可知和為等腰三角形,根據(jù)三線合一的特點可將和化為和,代入可求得結(jié)果.【詳解】為中點和為等腰三角形,同理可得:本題正確選項:【點睛】本題考查向量數(shù)量積的求解問題,關(guān)鍵是能夠利用模長的等量關(guān)系得到等腰三角形,從而將含夾角的運算轉(zhuǎn)化為已知模長的向量的運算.4、B【解析】
根據(jù)向量平行得到,再利用和差公式計算得到答案.【詳解】向量,且,則..故選:.【點睛】本題考查了向量平行求參數(shù),和差公式,意在考查學(xué)生的綜合應(yīng)用能力.5、B【解析】
根據(jù)直線垂直公式得到答案.【詳解】已知直線,與互相垂直或故答案選B【點睛】本題考查了直線垂直的關(guān)系,意在考查學(xué)生的計算能力.6、D【解析】
若為異面直線,且直線,則與可能相交,也可能異面,但是與不能平行,若,則,與已知矛盾,選項、、不正確故選.7、D【解析】
易得該幾何體為三棱錐,再根據(jù)三視圖在長方體中畫出該三棱錐,再根據(jù)此三棱錐與長方體的外接球相同求解即可.【詳解】在長方體中畫出該幾何體,易得為三棱錐,且三棱錐與該長方體外接球相同.又長方體體對角線等于外接球直徑,故.故外接球體積故選:D【點睛】本題主要考查了三視圖還原幾何體以及求外接球體積的問題,屬于基礎(chǔ)題.8、D【解析】
由半徑為1的圓內(nèi)接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,求得十二邊形的面積,利用面積比的幾何概型,即可求解.【詳解】由題意,半徑為1的圓內(nèi)接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,所以該正十二邊形的面積為,由幾何概型的概率計算公式,可得所求概率,故選D.【點睛】本題主要考查了幾何概型的概率的計算問題,解決此類問題的步驟:求出滿足條件A的基本事件對應(yīng)的“幾何度量”,再求出總的基本事件對應(yīng)的“幾何度量”,然后根據(jù)求解,著重考查了分析問題和解答問題的能力.9、B【解析】
利用等差數(shù)列的前n項和公式、通項公式列出方程組,能求出等差數(shù)列{an}的公差.【詳解】∵為等差數(shù)列的前n項和,,,∴,解得d=2,a1=5,∴等差數(shù)列的公差為2.故選:B.【點睛】本題考查等差數(shù)列的公差,此類問題根據(jù)題意設(shè)公差和首項為d、a1,列出方程組解出即可,屬于基礎(chǔ)題.10、B【解析】
根據(jù)條件式,判斷出,,且.由不等式性質(zhì)、基本不等式性質(zhì)或特殊值即可判斷選項.【詳解】因為所以可得,,且對于A,由對數(shù)函數(shù)的圖像與性質(zhì)可知,,所以A錯誤;對于B,由基本不等式可知,即由于,則,所以B正確;對于C,由條件可得,所以C錯誤;對于D,當(dāng)時滿足條件,但,所以D錯誤.綜上可知,B為正確選項故選:B【點睛】本題考查了不等式性質(zhì)的綜合應(yīng)用,根據(jù)基本不等式求最值,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、2【解析】
根據(jù)極限存在首先判斷出的值,然后根據(jù)極限的值計算出的值,由此可計算出的值.【詳解】因為,所以,又因為,所以,所以.故答案為:.【點睛】本題考查根據(jù)極限的值求解參數(shù),難度較易.12、【解析】試題分析:由,可得,整理得,即,所以.考點:余弦定理;三角形的面積公式.13、【解析】
由原函數(shù)的解析式解出自變量x的解析式,再把x和y交換位置,即可得到結(jié)果.【詳解】解:記∴故反函數(shù)為:【點睛】本題考查函數(shù)與反函數(shù)的定義,求反函數(shù)的方法和步驟,注意反函數(shù)的定義域是原函數(shù)的值域.14、【解析】試題分析:由題意,即,∴.考點:直線的傾斜角.15、【解析】
先將角度化為弧度,再根據(jù)弧長公式求解.【詳解】因為圓心角,所以弧長.故答案為:【點睛】本題考查了角度和弧度的互化以及弧長公式的應(yīng)用問題,屬于基礎(chǔ)題.16、【解析】
由,展開后進(jìn)行計算,得到的值,從而得到答案.【詳解】因為向量,的夾角為,若,,所以,所以.故答案為:.【點睛】本題考查求向量的模長,向量的數(shù)量積運算,屬于簡單題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)非奇非偶,理由見解析;(2)21或20個.【解析】
(1)先利用輔助角公式化簡,再利用和可判斷為非奇非偶函數(shù).(2)求出的解析式后結(jié)合函數(shù)的圖像、周期及給定區(qū)間的特點可判斷在給定的范圍上的零點的個數(shù).【詳解】(1),則,故不是奇函數(shù),又,,故不是偶函數(shù).綜上,為非奇非偶函數(shù).(2),的圖象如圖所示:令,則,則或,,也就是或者,,所以在形如的區(qū)間上恰有兩個不同零點.把區(qū)間分成10個小區(qū)間,它們分別為:,及,根據(jù)函數(shù)的圖像可知:前9個區(qū)間的長度恰為一個周期且左閉右開,故每個區(qū)間恰有兩個不同的零點,最后一個區(qū)間的長度恰為一個周期且為閉區(qū)間,故該區(qū)間上可能有兩個不同的零點或3個不同的零點.故在區(qū)間上可有21個或者20個零點.【點睛】本題考查正弦型函數(shù)的奇偶性、正弦型函數(shù)在給定范圍上的零點個數(shù),注意說明一個函數(shù)不是奇函數(shù)或不是偶函數(shù),可通過反例來說明,而零點個數(shù)的判斷則需綜合考慮給定區(qū)間的長度、開閉情況及函數(shù)的周期.18、證明見解析【解析】
先證直線平面,再證平面⊥平面.【詳解】證明:∵是圓的直徑,是圓上任一點,,,平面,平面,,又,平面,又平面,平面⊥平面.【點睛】本題考查圓周角及線面垂直判定定理、面面垂直判定定理的應(yīng)用,考查垂直關(guān)系的簡單證明.19、(1),;(2)x>,是減函數(shù).【解析】
(1)畫出圖形,分別求出四棱錐的高,及側(cè)面的高的表達(dá)式,即可求出表面積與體積的表達(dá)式;(2)結(jié)合表達(dá)式,可求出的范圍,即定義域,然后判斷其為減函數(shù).【詳解】(1)過點作平面的垂線,垂足為,取的中點,連結(jié),因為為正四棱錐,所以,,,,所以四棱錐的表面積為,體積.(2),解得,是減函數(shù).【點睛】本題考查了四棱錐的結(jié)構(gòu)特征,考查了表面積與體積的計算,考查了學(xué)生的空間想象能力與計算能力,屬于中檔題.20、(Ⅰ)(Ⅱ)10【解析】
解:(I)依題意得,即.當(dāng)n≥2時,;當(dāng)所以.(II)由(I)得,故=.因此
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 日語貿(mào)易合同范例
- 招聘輸送人頭合同范例
- 政府門面轉(zhuǎn)租合同范例
- 承建蔬菜大棚合同范例
- 托管班合伙合同范例
- 正規(guī)勞務(wù)施工合同范例
- 國際傭金合同范例
- 教培員工合同范例
- 單位綠化合同范例
- 樣品房裝修合同范例
- 業(yè)務(wù)員手冊內(nèi)容
- 計劃分配率和實際分配率_CN
- pH值的測定方法
- 《紅燈停綠燈行》ppt課件
- 小學(xué)語文作文技巧六年級寫人文章寫作指導(dǎo)(課堂PPT)
- 《APQP培訓(xùn)資料》
- PWM脈寬直流調(diào)速系統(tǒng)設(shè)計及 matlab仿真驗證
- 家具銷售合同,家居訂購訂貨協(xié)議A4標(biāo)準(zhǔn)版(精編版)
- 食品加工與保藏課件
- 有功、無功控制系統(tǒng)(AGCAVC)技術(shù)規(guī)范書
- 儲罐施工計劃
評論
0/150
提交評論