版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
安徽省滁州市定遠(yuǎn)縣西片區(qū)2023-2024學(xué)年數(shù)學(xué)高一下期末經(jīng)典試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知等差數(shù)列{an}的公差為2,若a1,a3,a4成等比數(shù)列,則a2等于A.-10 B.-8 C.-6 D.-42.已知函數(shù),若對(duì)于恒成立,則實(shí)數(shù)的取值范圍為()A. B. C. D.3.一個(gè)幾何體的三視圖如圖所示,則幾何體的體積是()A. B. C. D.14.設(shè)a>0,b>0,若是和的等比中項(xiàng),則的最小值為()A.6 B. C.8 D.95.已知函數(shù)向左平移個(gè)單位長(zhǎng)度后,其圖象關(guān)于軸對(duì)稱,則的最小值為()A. B. C. D.6.已知,則的最小值為A.3 B.4 C.5 D.67.一個(gè)盒子內(nèi)裝有大小相同的紅球、白球和黑球若干個(gè),從中摸出1個(gè)球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,那么摸出黑球或紅球的概率是()A.0.3 B.0.55 C.0.7 D.0.758.已知向量,,若,則的值為()A. B.1 C. D.9.與直線垂直于點(diǎn)的直線的一般方程是()A. B. C. D.10.閱讀如圖所示的程序,若運(yùn)該程序輸出的值為100,則的面的條件應(yīng)該是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.中,,,,則________.12.?dāng)?shù)列中,,以后各項(xiàng)由公式給出,則等于_____.13.無窮等比數(shù)列的首項(xiàng)是某個(gè)正整數(shù),公比為單位分?jǐn)?shù)(即形如:的分?jǐn)?shù),為正整數(shù)),若該數(shù)列的各項(xiàng)和為3,則________.14.已知點(diǎn)P是矩形ABCD邊上的一動(dòng)點(diǎn),,,則的取值范圍是________.15.已知數(shù)列是等比數(shù)列,若,,則公比________.16.將角度化為弧度:________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.若x,y為正實(shí)數(shù),求證:,并說明等號(hào)成立的條件.18.已知向量.(1)若向量,且,求的坐標(biāo);(2)若向量與互相垂直,求實(shí)數(shù)的值.19.在中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c;已知.(1)求角B的大?。唬?)若外接圓的半徑為2,求面積的最大值.20.已知四棱錐的底面為直角梯形,,,底面,且,是的中點(diǎn).(1)求證:直線平面;(2)若,求二面角的正弦值.21.在等差數(shù)列中,,其前項(xiàng)和為,等比數(shù)列的各項(xiàng)均為正數(shù),,且,.(1)求數(shù)列和的通項(xiàng)公式;(2)令,設(shè)數(shù)列的前項(xiàng)和為,求()的最大值與最小值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解析】試題分析:有題可知,a1,a3,a4成等比數(shù)列,則有,又因?yàn)椋鸻n}是等差數(shù)列,故有,公差d=2,解得;考點(diǎn):?等差數(shù)列通項(xiàng)公式?等比數(shù)列性質(zhì)2、A【解析】
首先設(shè),將題意轉(zhuǎn)化為,即可,再分類討論求出,解不等式組即可.【詳解】,恒成立,等價(jià)于,恒成立.令,對(duì)稱軸為.即等價(jià)于,即可.當(dāng)時(shí),得到,解得:.當(dāng)時(shí),得到,解得:.當(dāng)時(shí),得到,解得:.綜上所述:.故選:A【點(diǎn)睛】本題主要考查二次不等式的恒成立問題,同時(shí)考查了二次函數(shù)的最值問題,分類討論是解題的關(guān)鍵,屬于中檔題.3、C【解析】
由三視圖知幾何體為三棱錐,且三棱錐的高為,底面是直角邊長(zhǎng)分別為1,的直角三角形,代入體積公式計(jì)算可得答案.【詳解】解:由三視圖知幾何體為三棱錐,且三棱錐的高為,底面是直角邊長(zhǎng)分別為1,的直角三角形,∴三棱柱的體積V.故選:C.【點(diǎn)睛】本題考查了由三視圖求幾何體的體積,解題的關(guān)鍵是判斷幾何體的形狀及數(shù)據(jù)所對(duì)應(yīng)的幾何量.4、D【解析】
試題分析:由題意a>0,b>0,且是和的等比中項(xiàng),即,則,當(dāng)且僅當(dāng)時(shí),即時(shí)取等號(hào).考點(diǎn):重要不等式,等比中項(xiàng)5、A【解析】
根據(jù)函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象關(guān)于軸對(duì)稱,即為偶函數(shù).,求得的最小值.【詳解】把函數(shù)向左平移個(gè)單位長(zhǎng)度后.可得的圖象.再根據(jù)所得圖象關(guān)于軸對(duì)稱,即為偶函數(shù).所以即,當(dāng)時(shí),的值最小.所以的最小值為:故選:A【點(diǎn)睛】本題主要考查函數(shù)的圖象變換規(guī)律,三角函數(shù)的圖象的對(duì)稱性,屬于基礎(chǔ)題.6、C【解析】
由,得,則,利用基本不等式,即可求解.【詳解】由題意,因?yàn)?,則,所以,當(dāng)且僅當(dāng)時(shí),即時(shí)取等號(hào),所以的最小值為5,故選C.【點(diǎn)睛】本題主要考查了基本不等式的應(yīng)用,其中解答中熟記基本不等式的使用條件,合理構(gòu)造是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.7、D【解析】
由題意可知摸出黑球的概率,再根據(jù)摸出黑球,摸出紅球?yàn)榛コ馐录?,根?jù)互斥事件的和即可求解.【詳解】因?yàn)閺闹忻?個(gè)球,若摸出紅球的概率是0.45,摸出白球的概率是0.25,所以摸出黑球的概率是,因?yàn)閺暮凶又忻?個(gè)球?yàn)楹谇蚧蚣t球?yàn)榛コ馐录悦龊谇蚧蚣t球的概率,故選D.【點(diǎn)睛】本題主要考查了兩個(gè)互斥事件的和事件,其概率公式,屬于中檔題.8、B【解析】
直接利用向量的數(shù)量積列出方程求解即可.【詳解】向量,,若,可得2﹣2=0,解得=1,故選B.【點(diǎn)睛】本題考查向量的數(shù)量積的應(yīng)用,考查計(jì)算能力,屬于基礎(chǔ)題.9、A【解析】由已知可得這就是所求直線方程,故選A.10、D【解析】
根據(jù)輸出值和代碼,可得輸出的最高項(xiàng)的值,進(jìn)而結(jié)合當(dāng)型循環(huán)結(jié)構(gòu)的特征得判斷框內(nèi)容.【詳解】根據(jù)循環(huán)體,可知因?yàn)檩敵龅闹禐?00,所以由等差數(shù)列求和公式可知求和到19停止,結(jié)合當(dāng)型循環(huán)結(jié)構(gòu)特征,可知滿足條件時(shí)返回執(zhí)行循環(huán)體,因而判斷框內(nèi)的內(nèi)容為,故選:D.【點(diǎn)睛】本題考查了當(dāng)型循環(huán)結(jié)構(gòu)的代碼應(yīng)用,根據(jù)輸出值選擇條件,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、7【解析】
在中,利用余弦定理得到,即可求解,得到答案.【詳解】由余弦定理可得,解得.故答案為:7.【點(diǎn)睛】本題主要考查了余弦定理的應(yīng)用,其中解答中熟記三角形的余弦定理,準(zhǔn)確計(jì)算是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.12、【解析】
可以利用前項(xiàng)的積與前項(xiàng)的積的關(guān)系,分別求得第三項(xiàng)和第五項(xiàng),即可求解,得到答案.【詳解】由題意知,數(shù)列中,,且,則當(dāng)時(shí),;當(dāng)時(shí),,則,當(dāng)時(shí),;當(dāng)時(shí),,則,所以.【點(diǎn)睛】本題主要考查了數(shù)列的遞推關(guān)系式的應(yīng)用,其中解答中熟練的應(yīng)用遞推關(guān)系式是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.13、【解析】
利用無窮等比數(shù)列的各項(xiàng)和,可求得,從而,利用首項(xiàng)是某個(gè)自然數(shù),可求,進(jìn)而可求出.【詳解】無窮等比數(shù)列各項(xiàng)和為3,,是個(gè)自然數(shù),則,.故答案為:【點(diǎn)睛】本題主要考查了等比數(shù)列的前項(xiàng)和公式,需熟記公式,屬于基礎(chǔ)題.14、【解析】
如圖所示,以為軸,為軸建立直角坐標(biāo)系,故,,設(shè).,根據(jù)幾何意義得到最值,【詳解】如圖所示:以為軸,為軸建立直角坐標(biāo)系,故,,設(shè).則.表示的幾何意義為到點(diǎn)的距離的平方減去.根據(jù)圖像知:當(dāng)為或的中點(diǎn)時(shí),有最小值為;當(dāng)與中的一點(diǎn)時(shí)有最大值為.故答案為:.【點(diǎn)睛】本題考查了向量的數(shù)量積的范圍,轉(zhuǎn)化為幾何意義是解題關(guān)鍵.15、【解析】
利用等比數(shù)列的通項(xiàng)公式即可得出.【詳解】∵數(shù)列是等比數(shù)列,若,,則,解得,即.故答案為:【點(diǎn)睛】本題考查了等比數(shù)列的通項(xiàng)公式,考查了計(jì)算能力,屬于基礎(chǔ)題.16、【解析】
根據(jù)角度和弧度的互化公式求解即可.【詳解】.故答案為:.【點(diǎn)睛】本題考查角度和弧度的互化公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、當(dāng)且僅當(dāng)時(shí)取等號(hào),證明見解析【解析】
由題意,.【詳解】由題意,可得:,當(dāng)且僅當(dāng)時(shí)取等號(hào),又,當(dāng)且僅當(dāng)時(shí)取等號(hào),聯(lián)立解得,故,當(dāng)且僅當(dāng)時(shí)取等號(hào).【點(diǎn)睛】本題考查了基本不等式的運(yùn)用,考查了不等式的證明,屬于中檔題.18、(1)或(2)【解析】
(1)因?yàn)?,所以可以設(shè)求出坐標(biāo),根據(jù)模長(zhǎng),可以得到參數(shù)的方程.(2)由于已知條件可以計(jì)算出與坐標(biāo)(含有參數(shù))而兩向量垂直,可以得到關(guān)于的方程,完成本題.【詳解】(1)法一:設(shè),則,所以解得所以或法二:設(shè),因?yàn)?,,所以,因?yàn)椋越獾没?,所以或?)因?yàn)橄蛄颗c互相垂直所以,即而,,所以,因此,解得【點(diǎn)睛】考查了向量的線性表示,引入?yún)?shù),只要我們能建立起引入?yún)?shù)的方程,則就能計(jì)算出所求參數(shù)值,從而完成本題.19、(1)(2)【解析】
(1)利用正弦定理與余弦的差角公式運(yùn)算求解即可.(2)根據(jù)正弦定理可得,再利用余弦定理與基本不等式求得再代入面積求最大值即可.【詳解】解:(1)在中,由正弦定理得,得,又∴.即,∴,又,∴.(2)結(jié)合(1)由正弦定理可知,由余弦定理可知,所以當(dāng)且僅當(dāng)時(shí)等號(hào)成立,所以,所以面積的最大值為.【點(diǎn)睛】本題主要考查了正余弦定理與三角形面積公式在解三角形中的運(yùn)用.同時(shí)考查了根據(jù)基本不等式求解三角形面積的最值問題.屬于中檔題.20、(1)證明見解析;(2).【解析】
(1)取中點(diǎn),連結(jié),,推導(dǎo)出,,從而平面平面,由此能證明直線平面;(2)以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,利用向量法能求出二面角的余弦值.【詳解】(1)證明:取中點(diǎn),連結(jié),,,是的中點(diǎn),,,,,平面平面,平面,直線平面.(2)解:,,底面,,是的中點(diǎn),,以為原點(diǎn),為軸,為軸,為軸,建立空間直角坐標(biāo)系,則,0,,,1,,,0,,,2,,,1,,,1,,,1,,,1,,,0,,設(shè)平面的法向量,,,則,取,得.設(shè)平面的法向量,,,則,取,得.設(shè)二面角的平面角為,則.二面角的余弦值為.【點(diǎn)睛】本題主要考查線面平行的證明,考查二面角的余弦值的求法,考查運(yùn)算求解能力,屬于中檔題.21、(1),;(2)的最大值是
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024家具購銷合同范本簡(jiǎn)單版
- 2024固廢業(yè)務(wù)處置合同
- 2024裝飾裝修工程施工合同
- 《兒童培訓(xùn)》課件
- 2024股票贈(zèng)與合同
- 數(shù)字化農(nóng)業(yè)實(shí)踐經(jīng)驗(yàn)總結(jié)
- 城市綠化管理的土壤管理與肥料使用考核試卷
- 《可持續(xù)發(fā)展新理念》課件
- 小區(qū)綠化承包合同8篇
- 信息系統(tǒng)的市場(chǎng)調(diào)研與競(jìng)爭(zhēng)分析考核試卷
- 臨床醫(yī)學(xué)職業(yè)素養(yǎng)與職業(yè)道德培訓(xùn)課件
- 火災(zāi)逃生與自救技能培訓(xùn)
- 2022年6月青少年軟件編程(Python)等級(jí)考試二級(jí)【答案版】
- 新高中歷史課標(biāo)思路15.5課件
- 煤氣發(fā)生爐拆除方案
- 債權(quán)人自愿放棄債權(quán)承諾書
- 國(guó)際經(jīng)濟(jì)與貿(mào)易專業(yè)生涯人物訪談報(bào)告
- xxxx學(xué)校教育事業(yè)統(tǒng)計(jì)工作總結(jié)
- “大力弘揚(yáng)教育家精神”2023征文10篇
- 《扣件式鋼管腳手架安全技術(shù)規(guī)范》JGJ130-2023
- 《雅思考試介紹》課件
評(píng)論
0/150
提交評(píng)論