版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省微山縣第二中學2025屆高一下數(shù)學期末復習檢測試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知冪函數(shù)過點,則的值為()A. B.1 C.3 D.62.在等比數(shù)列中,已知,那么的前4項和為().A.81 B.120 C.121 D.1923.對于任意實數(shù),下列命題中正確的是()A.若,則 B.若,則C.若,則 D.若,則4.若直線與圓交于兩點,關于直線對稱,則實數(shù)的值為()A. B. C. D.5.設是等比數(shù)列,則“”是“數(shù)列是遞增數(shù)列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件6.將的圖象向左平移個單位長度,再向下平移個單位長度得到的圖象,若,則()A. B. C. D.7.已知,,直線,若直線過線段的中點,則()A.-5 B.5 C.-4 D.48.(2017新課標全國Ⅲ理科)已知圓柱的高為1,它的兩個底面的圓周在直徑為2的同一個球的球面上,則該圓柱的體積為A. B.C. D.9.若,,,,則等于()A. B. C. D.10.已知變量和滿足關系,變量與正相關.下列結論中正確的是()A.與負相關,與負相關B.與正相關,與正相關C.與正相關,與負相關D.與負相關,與正相關二、填空題:本大題共6小題,每小題5分,共30分。11.已知數(shù)列的前項和為,,則__________.12.向量在邊長為1的正方形網(wǎng)格中的位置如圖所示,則以向量為鄰邊的平行四邊形的面積是_________.13.已知正三角形的邊長是2,點為邊上的高所在直線上的任意一點,為射線上一點,且.則的取值范圍是____14.已知平面向量,若,則________15.若采用系統(tǒng)抽樣的方法從420人中抽取21人做問卷調查,為此將他們隨機編號為1,2,…,420,則抽取的21人中,編號在區(qū)間[241,360]內的人數(shù)是______16.若角的終邊經(jīng)過點,則的值為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知的頂點,邊上的中線所在直線方程為,邊上的高,所在直線方程為.(1)求頂點的坐標;(2)求直線的方程.18.已知關于的一元二次函數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的二次項系數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的一次項系數(shù).(1)若,,求函數(shù)有零點的概率;(2)若,求函數(shù)在區(qū)間上是增函數(shù)的概率.19.已知等差數(shù)列的前n項和為,且,.(1)求的通項公式;(2)若,且,,成等比數(shù)列,求k的值.20.已知數(shù)列滿足若數(shù)列滿足:(1)求數(shù)列的通項公式;(2)求證:是等差數(shù)列.21.已知數(shù)列滿足,.(Ⅰ)求,的值,并證明:0<≤1;(Ⅱ)證明:;(Ⅲ)證明:.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
設,代入點的坐標,求得,然后再求函數(shù)值.【詳解】設,由題意,,即,∴.故選:C.【點睛】本題考查冪函數(shù)的解析式,屬于基礎題.2、B【解析】
根據(jù)求出公比,利用等比數(shù)列的前n項和公式即可求出.【詳解】,.故選:B【點睛】本題主要考查了等比數(shù)列的通項公式,等比數(shù)列的前n項和,屬于中檔題.3、C【解析】
根據(jù)是任意實數(shù),逐一對選項進行分析即得?!驹斀狻坑深},當時,,則A錯誤;當,時,,則B錯誤;可知,則有,因此C正確;當時,有,可知C錯誤.故選:C【點睛】本題考查判斷正確命題,是基礎題。4、A【解析】
由題意,得直線是線段的中垂線,則其必過圓的圓心,將圓心代入直線,即可得本題答案.【詳解】解:由題意,得直線是線段的中垂線,所以直線過圓的圓心,圓的圓心為,,解得.故選:A.【點睛】本題給出直線與圓相交,且兩個交點關于已知直線對稱,求參數(shù)的值.著重考查了直線與圓的位置關系等知識,屬于基礎題.5、B【解析】
由,可得,解得或,根據(jù)等比數(shù)列的單調性的判定方法,結合充分、必要條件的判定方法,即可求解,得到答案.【詳解】設等比數(shù)列的公比為,則,可得,解得或,此時數(shù)列不一定是遞增數(shù)列;若數(shù)列為遞增數(shù)列,可得或,所以“”是“數(shù)列為遞增數(shù)列”的必要不充分條件.故選:B.【點睛】本題主要考查了等比數(shù)列的通項公式與單調性,以及充分條件、必要條件的判定,其中解答中熟記等比數(shù)列的單調性的判定方法是解答本題的關鍵,著重考查了推理與運算能力,屬于基礎題.6、D【解析】因為,所以,因此,選D.點睛:三角函數(shù)的圖象變換,提倡“先平移,后伸縮”,但“先伸縮,后平移”也常出現(xiàn)在題目中,所以也必須熟練掌握.無論是哪種變形,切記每一個變換總是對字母而言.7、B【解析】
根據(jù)題意先求出線段的中點,然后代入直線方程求出的值.【詳解】因為,,所以線段的中點為,因為直線過線段的中點,所以,解得.故選【點睛】本題考查了直線過某一點求解參量的問題,較為簡單.8、B【解析】繪制圓柱的軸截面如圖所示,由題意可得:,結合勾股定理,底面半徑,由圓柱的體積公式,可得圓柱的體積是,故選B.【名師點睛】涉及球與棱柱、棱錐的切、接問題時,一般過球心及多面體中的特殊點(一般為接、切點)或線作截面,把空間問題轉化為平面問題,再利用平面幾何知識尋找?guī)缀误w中元素間的關系,或只畫內切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關系,列方程(組)求解.9、C【解析】
利用同角三角函數(shù)的基本關系求出與,然后利用兩角差的余弦公式求出值.【詳解】,,則,,則,所以,,因此,,故選C.【點睛】本題考查利用兩角和的余弦公式求值,解決這類求值問題需要注意以下兩點:①利用同角三角平方關系求值時,要求對象角的范圍,確定所求值的正負;②利用已知角來配湊未知角,然后利用合適的公式求解.10、A【解析】
因為變量和滿足關系,一次項系數(shù)為,所以與負相關;變量與正相關,設,所以,得到,一次項系數(shù)小于零,所以與負相關,故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】分析:由,當時,當時,相減可得,則,由此可以求出數(shù)列的通項公式詳解:當時,當時由可得二式相減可得:又則數(shù)列是公比為的等比數(shù)列點睛:本題主要考查了等比數(shù)列的通項公式即數(shù)列遞推式,在解答此類問題時看到,則用即可算出,需要注意討論的情況。12、3【解析】
將向量平移至相同的起點,寫出向量對應的坐標,計算向量的夾角,從而求得面積.【詳解】根據(jù)題意,將兩個向量平移至相同的起點,以起點為原點建立坐標系如下所示:則,故.又兩向量的夾角為銳角,故,則該平行四邊形的面積為.故答案為:3.【點睛】本題考查用向量解決幾何問題的能力,涉及向量坐標的求解,夾角的求解,屬基礎題.13、【解析】
以AB所在的直線為x軸,以AB的中點為坐標原點,AB的垂線為y軸,建立平面直角坐標系,求出A.C,P,Q的坐標,運用平面向量的坐標表示和性質,求出的表達式,利用判別式法求出的取值范圍.【詳解】以AB所在的直線為x軸,以AB的中點為坐標原點,AB的垂線為y軸,建立平面直角坐標系,如下圖所示:,設,,設,可得,由,可得即,,令,可得,當時,成立,當時,,即,,即,所以的取值范圍是.【點睛】本題考查了平面向量數(shù)量積的性質和運算,考查了平面向量模的取值范圍,構造函數(shù),利用判別式法求函數(shù)的最值是解題的關鍵.14、1【解析】
根據(jù)即可得出,解出即可.【詳解】∵;∴;解得,故答案為1.【點睛】本題主要考查向量坐標的概念,以及平行向量的坐標關系,屬于基礎題.15、6【解析】試題分析:由題意得,編號為,由得共6個.考點:系統(tǒng)抽樣16、.【解析】
根據(jù)三角函數(shù)的定義求出的值,然后利用反三角函數(shù)的定義得出的值.【詳解】由三角函數(shù)的定義可得,,故答案為.【點睛】本題考查三角函數(shù)的定義以及反三角函數(shù)的定義,解本題的關鍵就是利用三角函數(shù)的定義求出的值,考查計算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)邊上的高所在直線方程求出的斜率,由點斜式可得的方程,與所在直線方程聯(lián)立即可得結果;(2)設則,代入中,可求得點坐標,利用兩點式可得結果.【詳解】(1)由邊上的高所在直線方程為得,所以直線AB所在的直線方程為,即聯(lián)立解得所以頂點的坐標為(4,3)(2)因為在直線上,所以設則,代入中,得所以則直線的方程為,即【點睛】本題主要考查直線的方程,直線方程主要有五種形式,每種形式的直線方程都有其局限性,斜截式與點斜式要求直線斜率存在,所以用這兩種形式設直線方程時要注意討論斜是否存在;截距式要注意討論截距是否為零;兩點式要注意討論直線是否與坐標軸平行;求直線方程的最終結果往往需要化為一般式.18、(1);(2)【解析】
(1)依次列出所有可能的情況,求出滿足的情況總數(shù),即可得到概率;(2)列出不等關系,表示出平面區(qū)域,求出滿足表示的區(qū)域的面積,即可得到概率.【詳解】(1)由題可得,,從集合中隨機取一個數(shù)作為此函數(shù)的二次項系數(shù),從集合中隨機取一個數(shù)作為此函數(shù)的一次項系數(shù),記為,這樣的有序數(shù)對共有,9種情況;函數(shù)有零點,即滿足,滿足條件的有:,6種情況,所以其概率為;(2),滿足條件的有序數(shù)對,,即平面直角坐標系內區(qū)域:矩形及內部區(qū)域,面積為4,函數(shù)在區(qū)間上是增函數(shù),即滿足,,,即,平面直角坐標系內區(qū)域:直角梯形及內部區(qū)域,面積為3,所以其概率為.【點睛】此題考查古典概型與幾何概型,關鍵在于準確得出二次函數(shù)有零點和在區(qū)間上是增函數(shù),分別所對應的基本事件個數(shù)以及對應區(qū)域的面積.19、(1);(2)4.【解析】
(1)設等差數(shù)列的公差為d,根據(jù)等差數(shù)列的通項公式,列出方程組,即可求解.(2)由(1),求得,再根據(jù),,成等比數(shù)列,得到關于的方程,即可求解.【詳解】(1)設等差數(shù)列的公差為d,由題意可得:,解得.所以數(shù)列的通項公式為.(2)由知,因為,,成等比數(shù)列,所以,即,解得.【點睛】本題主要考查了等差數(shù)列的通項公式,以及前n項和公式的應用,其中解答中熟記等差數(shù)列的通項公式和前n項和公式,列出方程準確運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.20、(1)(1)證明見解析【解析】
數(shù)列滿足,變形為,利用等比數(shù)列的通項公式即可得出數(shù)列滿足:,時,,可得,化為:,可得:,相減化簡即可證明.【詳解】(1)數(shù)列滿足,,數(shù)列是等比數(shù)列,首項為1,公比為1.,.證明:數(shù)列滿足:,時,,解得.時,,可得,化為:,可得:,相減可得:,化為:,是等差數(shù)列.【點睛】本題主要考查了等差數(shù)列與等比數(shù)列的定義通項公式、指數(shù)運算性質、數(shù)列遞推關系,考查了推理能力與計算能力,屬于中檔題.21、(Ⅰ)見證明;(Ⅱ)見證明;(Ⅲ)見證明【解析】
(I)直接代入計算得,利用得從而可證結論;(II)證
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《義務教育法》知識考試復習題庫(含答案)
- (技師)化學檢驗工職業(yè)技能鑒定理論考試題庫(含答案)
- 年產1000噸納米復合氧化鋯項目可行性研究報告寫作模板-申批備案
- 2025年江西外語外貿職業(yè)學院高職單招職業(yè)適應性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年新疆工業(yè)職業(yè)技術學院高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 幼兒園月亮故事活動策劃方案五篇
- 標線承包合同范本
- 精準醫(yī)療項目研發(fā)合作合同
- 麻雀的聽評課記錄
- 承攬貨物運輸合同范本
- 房地產調控政策解讀
- 產前診斷室護理工作總結
- 2024-2025學年八年級數(shù)學人教版上冊寒假作業(yè)(綜合復習能力提升篇)(含答案)
- 《AP內容介紹》課件
- 醫(yī)生定期考核簡易程序述職報告范文(10篇)
- 安全創(chuàng)新創(chuàng)效
- 《中國糖尿病防治指南(2024版)》更新要點解讀
- 國外文化消費研究述評
- 部編版語文四年級下冊第一單元 迷人的鄉(xiāng)村風景 大單元整體教學設計
- 湖南省長郡中學2023-2024學年高二下學期寒假檢測(開學考試)物理 含解析
- 五年級行程問題應用題100道
評論
0/150
提交評論