荊州市重點(diǎn)中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第1頁
荊州市重點(diǎn)中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第2頁
荊州市重點(diǎn)中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第3頁
荊州市重點(diǎn)中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第4頁
荊州市重點(diǎn)中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末達(dá)標(biāo)檢測試題含解析_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

荊州市重點(diǎn)中學(xué)2023-2024學(xué)年高一下數(shù)學(xué)期末達(dá)標(biāo)檢測試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在直角梯形中,,為的中點(diǎn),若,則A.1 B. C. D.2.已知向量、滿足,且,則為()A. B.6 C.3 D.3.已知向量,且,則與的夾角為()A. B. C. D.4.在中,角,,所對的邊分別是,,,,,,則()A.或 B.C. D.5.已知半圓C:(),A、B分別為半圓C與x軸的左、右交點(diǎn),直線m過點(diǎn)B且與x軸垂直,點(diǎn)P在直線m上,縱坐標(biāo)為t,若在半圓C上存在點(diǎn)Q使,則t的取值范圍是()A. B.C. D.6.若,則下列不等式中不正確的是()A. B. C. D.7.如圖,正方形的邊長為2cm,它是水平放置的一個平面圖形的直觀圖,則原平面圖形的周長是()cm.A.12 B.16 C. D.8.設(shè)函數(shù)的圖象為,則下列結(jié)論正確的是()A.函數(shù)的最小正周期是B.圖象關(guān)于直線對稱C.圖象可由函數(shù)的圖象向左平移個單位長度得到D.函數(shù)在區(qū)間上是增函數(shù)9.已知函數(shù)與的圖象上存在關(guān)于軸對稱的點(diǎn),則實(shí)數(shù)的取值范圍是().A. B. C. D.10.在中,設(shè)角,,的對邊分別是,,,且,則一定是()A.等邊三角形 B.等腰三角形 C.直角三角形 D.等腰直角三角形二、填空題:本大題共6小題,每小題5分,共30分。11.若,且,則__________.12.若為銳角,,則__________.13.設(shè)等比數(shù)列滿足a1+a2=–1,a1–a3=–3,則a4=___________.14.已知,若方程的解集為,則__________.15.已知向量,.若向量與垂直,則________.16.已知數(shù)列中,其前項(xiàng)和為,,則_____.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,在以、、、、、為頂點(diǎn)的五面體中,面是等腰梯形,,面是矩形,平面平面,,.(1)求證:平面平面;(2)若三棱錐的體積為,求的值.18.己知,,且函數(shù)的圖像上的任意兩條對稱軸之間的距離的最小值是.(1)求的值:(2)將函數(shù)的圖像向右平移單位后,得到函數(shù)的圖像,求函數(shù)在上的最值,并求取得最值時的的值.19.如圖,在直四棱柱中,底面為等腰梯形,,,,,??分別是??的中點(diǎn).(1)證明:直線平面;(2)求直線與面所成角的大??;(3)求二面角的平面角的余弦值.20.已知二次函數(shù)滿足以下要求:①函數(shù)的值域?yàn)?;②對恒成立。求:?)求函數(shù)的解析式;(2)設(shè),求時的值域。21.現(xiàn)需要設(shè)計一個倉庫,它由上下兩部分組成,上部分的形狀是正四棱錐,下部分的形狀是正四棱柱(如圖所示),并要求正四棱柱的高是正四棱錐的高的4倍.(1)若則倉庫的容積是多少?(2)若正四棱錐的側(cè)棱長為,則當(dāng)為多少時,倉庫的容積最大?

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、B【解析】

連接,因?yàn)闉橹悬c(diǎn),得到,可求出,從而可得出結(jié)果.【詳解】連接,因?yàn)闉橹悬c(diǎn),,.故選B【點(diǎn)睛】本題主要考查平面向量基本定理的應(yīng)用,熟記平面向量基本定理即可,屬于??碱}型.2、A【解析】

先由可得,即可求得,再對平方處理,進(jìn)而求解【詳解】因?yàn)?所以,則,所以,則,故選:A【點(diǎn)睛】本題考查向量的模,考查向量垂直的數(shù)量積表示,考查運(yùn)算能力3、D【解析】

直接由平面向量的數(shù)量積公式,即可得到本題答案.【詳解】設(shè)與的夾角為,由,,,所以.故選:D【點(diǎn)睛】本題主要考查平面向量的數(shù)量積公式.4、C【解析】

將已知代入正弦定理可得,根據(jù),由三角形中大邊對大角可得:,即可求得.【詳解】解:,,由正弦定理得:故選C.【點(diǎn)睛】本題考查了正弦定理、三角形的邊角大小關(guān)系,考查了推理能力與計算能力.5、A【解析】

根據(jù)題意,設(shè)PQ與x軸交于點(diǎn)T,分析可得在Rt△PBT中,|BT||PB||t|,分p在x軸上方、下方和x軸上三種情況討論,分析|BT|的最值,即可得t的范圍,綜合可得答案.【詳解】根據(jù)題意,設(shè)PQ與x軸交于點(diǎn)T,則|PB|=|t|,由于BP與x軸垂直,且∠BPQ,則在Rt△PBT中,|BT||PB||t|,當(dāng)P在x軸上方時,PT與半圓有公共點(diǎn)Q,PT與半圓相切時,|BT|有最大值3,此時t有最大值,當(dāng)P在x軸下方時,當(dāng)Q與A重合時,|BT|有最大值2,|t|有最大值,則t取得最小值,t=0時,P與B重合,不符合題意,則t的取值范圍為[,0)];故選A.【點(diǎn)睛】本題考查直線與圓方程的應(yīng)用,涉及直線與圓的位置關(guān)系,屬于中檔題.6、C【解析】

,可得,則根據(jù)不等式的性質(zhì)逐一分析選項(xiàng),A:,,所以成立;B:,則,根據(jù)基本不等式以及等號成立的條件則可判斷;C:且,根據(jù)可乘性可知結(jié)果;D:,根據(jù)乘方性可判斷結(jié)果.【詳解】A:由題意,不等式,可得,則,,所以成立,所以A是正確的;B:由,則,所以,因?yàn)椋缘忍柌怀闪ⅲ猿闪?,所以B是正確的;C:由且,根據(jù)不等式的性質(zhì),可得,所以C不正確;D:由,可得,所以D是正確的,故選:C.【點(diǎn)睛】本題考查不等式的性質(zhì),不等式等號成立的條件,熟記不等式的性質(zhì)是解題的關(guān)鍵,屬于基礎(chǔ)題.7、B【解析】

根據(jù)直觀圖與原圖形的關(guān)系,可知原圖形為平行四邊形,結(jié)合線段關(guān)系即可求解.【詳解】根據(jù)直觀圖,可知原圖形為平行四邊形,因?yàn)檎叫蔚倪呴L為2cm,所以原圖形cm,,則,所以原平面圖形的周長為,故選:B.【點(diǎn)睛】本題考查了平面圖形直觀圖與原圖形的關(guān)系,由直觀圖求原圖形面積方法,屬于基礎(chǔ)題.8、B【解析】

利用函數(shù)的周期判斷A的正誤;通過x=函數(shù)是否取得最值判斷B的正誤;利用函數(shù)的圖象的平移判斷C的正誤,利用函數(shù)的單調(diào)區(qū)間判斷D的正誤.【詳解】對于A,f(x)的最小正周期為π,判斷A錯誤;對于B,當(dāng)x=,函數(shù)f(x)=sin(2×+)=1,∴選項(xiàng)B正確;對于C,把的圖象向左平移個單位,得到函數(shù)sin[2(x+)]=sin(2x+,∴選項(xiàng)C不正確.對于D,由,可得,k∈Z,所以在上不恒為增函數(shù),∴選項(xiàng)D錯誤;故選B.【點(diǎn)睛】本題考查三角函數(shù)的基本性質(zhì)的應(yīng)用,函數(shù)的單調(diào)性、周期性及函數(shù)圖象變換,屬于基本知識的考查.9、A【解析】若函數(shù)f(x)=a﹣x2(1≤x≤2)與g(x)=2x+1的圖象上存在關(guān)于x軸對稱的點(diǎn),則方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,令g(x)=x2﹣2x﹣1,1≤x≤2,由g(x)=x2﹣2x﹣1的圖象是開口朝上,且以直線x=1為對稱軸的拋物線,故當(dāng)x=1時,g(x)取最小值﹣2,當(dāng)x=2時,函數(shù)取最大值﹣1,故a∈[﹣2,﹣1],故選:A.點(diǎn)睛:圖像上存在關(guān)于軸對稱的點(diǎn),即方程a﹣x2=﹣(2x+1)?a=x2﹣2x﹣1在區(qū)間[1,2]上有解,轉(zhuǎn)化為方程有解求參的問題,變量分離,畫出函數(shù)圖像,使得函數(shù)圖像和常函數(shù)圖像有交點(diǎn)即可;這是解決方程有解,圖像有交點(diǎn),函數(shù)有零點(diǎn)的常見方法。10、C【解析】

利用二倍角公式化簡已知表達(dá)式,利用余弦定理化角為邊的關(guān)系,即可推出三角形的形狀.【詳解】解:因?yàn)椋裕矗捎嘞叶ɡ砜芍?,所以.所以三角形是直角三角形.故選:.【點(diǎn)睛】本題考查三角形的形狀的判斷,余弦定理的應(yīng)用,考查計算能力,屬于中檔題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】根據(jù)三角函數(shù)恒等式,將代入得到,又因?yàn)?,故得到故答案為?2、【解析】因?yàn)闉殇J角,,所以,.13、-8【解析】設(shè)等比數(shù)列的公比為,很明顯,結(jié)合等比數(shù)列的通項(xiàng)公式和題意可得方程組:,由可得:,代入①可得,由等比數(shù)列的通項(xiàng)公式可得.【名師點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,在使用等比數(shù)列的前n項(xiàng)和公式時,應(yīng)該要分類討論,有時還應(yīng)善于運(yùn)用整體代換思想簡化運(yùn)算過程.14、【解析】

將利用輔助角公式化簡,可得出的值.【詳解】,其中,,因此,,故答案為.【點(diǎn)睛】本題考查利用輔助角公式化簡計算,化簡時要熟悉輔助角變形的基本步驟,考查運(yùn)算求解能力,屬于中等題.15、7【解析】

由與垂直,則數(shù)量積為0,求出對應(yīng)的坐標(biāo),計算即可.【詳解】,,,又與垂直,故,解得,解得.故答案為:7.【點(diǎn)睛】本題考查通過向量數(shù)量積求參數(shù)的值.16、1【解析】

本題主要考查了已知數(shù)列的通項(xiàng)式求前和,根據(jù)題目分奇數(shù)項(xiàng)和偶數(shù)項(xiàng)直接求即可?!驹斀狻?,則.故答案為:1.【點(diǎn)睛】本題主要考查了給出數(shù)列的通項(xiàng)式求前項(xiàng)和以及極限。求數(shù)列的前常用的方法有錯位相減、分組求和、裂項(xiàng)相消等。本題主要利用了分組求和的方法。屬于基礎(chǔ)題。三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】

(1)由面面垂直的性質(zhì)定理得出平面,可得出,再推導(dǎo)出,利用線面垂直的判定定理得出平面,然后利用面面垂直的判定定理可得出平面平面;(2)推導(dǎo)出平面,計算出的面積,然后利用錐體體積公式可求得三棱錐的體積,進(jìn)而得解.【詳解】(1)因?yàn)樗倪呅问蔷匦危剩制矫嫫矫?,平面平面,平面,所以平面,又面,所以,在等腰梯形中,,,因,故,,即,又,故平面,平面,所以平面平面;?)的面積為,,平面,所以,平面,,故.【點(diǎn)睛】本題考查面面垂直的證明,同時也考查了利用三棱錐體積求參數(shù),考查推理能力與計算能力,屬于中等題.18、(1)1;(1)此時,此時【解析】

(1)由條件利用兩角和差的正弦公式化簡f(x)的解析式,由周期求出ω,由f(2)=2求出的值,可得f(x)的解析式,從而求得f()的值.(1)由條件利用函數(shù)y=Asin(ωx+)的圖象變換規(guī)律求得g(x)的解析式,再根據(jù)正弦函數(shù)的定義域和值域求得g(x)在x∈[]上的最值.【詳解】(1)f(x)=sin(ωx+)+cos(ωx+)=,故,求得ω=1.再根據(jù),可得=﹣,故.(1)將函數(shù)y=f(x)的圖象向右平移個單位后,得到函數(shù)y=g(x)=的圖象.∵x∈[],∴,當(dāng)時,即時,g(x)取得最大值為;當(dāng)時,即時,g(x)取得最小值為2.【點(diǎn)睛】本題主要考查兩角和差的正弦公式,由函數(shù)y=Asin(ωx+)的部分圖象求解析式,函數(shù)y=Asin(ωx+)的圖象變換規(guī)律,正弦函數(shù)的定義域和值域,屬于中檔題.19、(1)證明見解析(2)(3)【解析】

(1)取的中點(diǎn),證明為平行四邊形,且,再由三角形中位線證明,最后由線面平行的判定定理證明即可;(2)作交于點(diǎn),由線面垂直關(guān)系得到直線與面所成角為,再根據(jù)是正三角形求解即可;(3)由(2)知,平面,再證明和分別垂直于,求出直線與面所成角為,再求出和的長度即可求解.【詳解】(1)在直四棱柱中,取的中點(diǎn),連接,,,因?yàn)?,,且,所以為平行四邊形,所以,又因?yàn)?分別是棱?的中點(diǎn),所以,所以,因?yàn)?所以???四點(diǎn)共面,所以平面,又因?yàn)槠矫?,所以直線平面.(2)因?yàn)?,,是棱的中點(diǎn),所以,為正三角形,取的中點(diǎn),則,又因?yàn)橹彼睦庵?,平面,所以,所以平面,即直線與面所成角為,所以,即,所以直線與面所成角為.(3)過在平面內(nèi)作,垂足為,連接.因?yàn)槊?,即,且與相交于點(diǎn),故且,則為二面角的平面角,在正三角形中,,在中,,∵,∴,在中,,,所以二面角的余弦值為.【點(diǎn)睛】本題主要考查線面平行的判定、線面角和二面角的求法,考查學(xué)生的空間想象能力和對線面關(guān)系的掌握,屬于中檔題.20、(1);(2)【解析】

(1)將寫成頂點(diǎn)式,然后根據(jù)最小值和對稱軸進(jìn)行分析;(2)先將表示出來,然后利用換元法以及對勾函數(shù)的單調(diào)性求解值域.【詳解】解:(1)∵又∵∴對稱軸為∵值域?yàn)椤嗲摇?,則函數(shù)(2)∵∵∴令,則∴∵∴,則所求值域?yàn)椤军c(diǎn)睛】對于形如的函數(shù),其單調(diào)增區(qū)間是:和,單調(diào)減區(qū)間是:和.21、(1)312(2)【解析】試題分析:(1)明確柱體與錐體積公式的區(qū)別,分別代入對應(yīng)公式求解;(2)先根據(jù)體積關(guān)系建立函數(shù)解析式,,然后利用導(dǎo)數(shù)求其最值.試題解析:解:(1)由PO1=2知OO1=4PO1=8.因?yàn)锳1B1=AB=6,所以正四棱錐P-A1B1C1D1的體積正四棱柱ABCD-A1B1C1D1的體積所以倉庫的容積V=V錐+V柱=24+288=312(m3).(

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論