云南省騰沖市第一中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第1頁
云南省騰沖市第一中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第2頁
云南省騰沖市第一中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第3頁
云南省騰沖市第一中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第4頁
云南省騰沖市第一中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題含解析_第5頁
已閱讀5頁,還剩9頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省騰沖市第一中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末學(xué)業(yè)水平測試試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.甲乙兩名同學(xué)6次考試的成績統(tǒng)計如右圖,甲乙兩組數(shù)據(jù)的平均數(shù)分別為,標準差分別為則()A. B.C. D.2.某高中三個年級共有3000名學(xué)生,現(xiàn)采用分層抽樣的方法從高一、高二、高三年級的全體學(xué)生中抽取一個容量為30的樣本進行視力健康檢查,若抽到的高一年級學(xué)生人數(shù)與高二年級學(xué)生人數(shù)之比為3∶2,抽到高三年級學(xué)生10人,則該校高二年級學(xué)生人數(shù)為()A.600 B.800 C.1000 D.12003.已知非零實數(shù)a,b滿足,則下列不等關(guān)系一定成立的是()A. B. C. D.4.函數(shù)的最小正周期為,則圖象的一條對稱軸方程是()A. B. C. D.5.直線上的點到圓上點的最近距離為()A. B. C. D.16.已知平面向量,滿足,,且,則與的夾角為()A. B. C. D.7.若直線與平面相交,則()A.平面內(nèi)存在無數(shù)條直線與直線異面B.平面內(nèi)存在唯一的一條直線與直線平行C.平面內(nèi)存在唯一的一條直線與直線垂直D.平面內(nèi)的直線與直線都相交8.在中,,,,則的面積為A. B. C. D.9.某幾何體的三視圖如圖所示,則該幾何體的體積為()A.6 B.4C. D.10.長方體中,已知,,棱在平面內(nèi),則長方體在平面內(nèi)的射影所構(gòu)成的圖形面積的取值范圍是()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.如圖是甲、乙兩人在10天中每天加工零件個數(shù)的莖葉圖,若這10天甲加工零件個數(shù)的中位數(shù)為,乙加工零件個數(shù)的平均數(shù)為,則______.12.已知球的一個內(nèi)接四面體中,,過球心,若該四面體的體積為,且,則球的表面積的最小值為_________.13.設(shè),其中,則的值為________.14.在△ABC中,sin2A=sin15.已知等差數(shù)列的前項和為,且,,則;16.設(shè)向量與向量共線,則實數(shù)等于__________.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(1)求函數(shù)的最小正周期;(2)求函數(shù)的最小值及相應(yīng)的值.18.為了解某城市居民的月平均用電量情況,隨機抽查了該城市100戶居民的月平均用電量(單位:度),得到頻率分布直方圖(如圖所示).數(shù)據(jù)的分組依次為、、、、、、.(1)求頻率分布直方圖中的值;(2)求該城市所有居民月平均用電量的眾數(shù)和中位數(shù)的估計值;(3)在月平均用電量為的四組用戶中,采用分層抽樣的方法抽取戶居民,則應(yīng)從月用電量在居民中抽取多少戶?19.已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點.(Ⅰ)求證:PC∥平面EBD;(Ⅱ)求證:平面PBC⊥平面PCD.20.已知函數(shù)(1)求的最小正周期;(2)求的單調(diào)增區(qū)間;(3)若求函數(shù)的值域.21.某生產(chǎn)企業(yè)研發(fā)了一種新產(chǎn)品,該產(chǎn)品在試銷一個階段后得到銷售單價(單位:元)和銷售量(單位:萬件)之間的一組數(shù)據(jù),如下表所示:銷售單價/元銷售量/萬件(1)根據(jù)表中數(shù)據(jù),建立關(guān)于的線性回歸方程;(2)從反饋的信息來看,消費者對該產(chǎn)品的心理價(單位:元/件)在內(nèi),已知該產(chǎn)品的成本是元,那么在消費者對該產(chǎn)品的心理價的范圍內(nèi),銷售單價定為多少時,企業(yè)才能獲得最大利潤?(注:利潤=銷售收入-成本)參考數(shù)據(jù):參考公式:

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】

利用甲、乙兩名同學(xué)6次考試的成績統(tǒng)計直接求解.【詳解】由甲乙兩名同學(xué)6次考試的成績統(tǒng)計圖知:甲組數(shù)據(jù)靠上,乙組數(shù)據(jù)靠下,甲組數(shù)據(jù)相對集中,乙組數(shù)據(jù)相對分散分散布,由甲乙兩組數(shù)據(jù)的平均數(shù)分別為,標準差分別為得,.故選:.【點睛】本題考查命題真假的判斷,考查平均數(shù)、的定義和性質(zhì)等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.2、B【解析】

根據(jù)題意可設(shè)抽到高一和高二年級學(xué)生人數(shù)分別為和,則,繼而算出抽到的各年級人數(shù),再根據(jù)分層抽樣的原理可以推得該校高二年級的人數(shù).【詳解】根據(jù)題意可設(shè)抽到高一和高二年級學(xué)生人數(shù)分別為和,則,即,所以高一年級和高二年級抽到的人數(shù)分別是12人和8人,則該校高二年級學(xué)生人數(shù)為人.故選:.【點睛】本題考查分層抽樣的方法,屬于容易題.3、D【解析】

根據(jù)不等式的基本性質(zhì),一一進行判斷即可得出正確結(jié)果.【詳解】A.,取,顯然不成立,所以該選項錯誤;B.,取,顯然不成立,所以該選項錯誤;C.,取,顯然不成立,所以該選項錯誤;D.,由已知且,所以,即.所以該選項正確.故選:.【點睛】本題考查不等式的基本性質(zhì),屬于容易題.4、D【解析】

先根據(jù)函數(shù)的周期求出的值,求出函數(shù)的對稱軸方程,然后利用賦值法可得出函數(shù)圖象的一條對稱軸方程.【詳解】由于函數(shù)的最小正周期為,則,,令,解得.當時,函數(shù)圖象的一條對稱軸方程為.故選:D.【點睛】本題考查利用正弦型函數(shù)的周期求參數(shù),同時也考查了正弦型函數(shù)圖象對稱軸方程的計算,解題時要結(jié)合正弦函數(shù)的基本性質(zhì)來進行求解,考查運算求解能力,屬于中等題.5、C【解析】

求出圓心和半徑,求圓心到直線的距離,此距離減去半徑即得所求的結(jié)果.【詳解】將圓化為標準形式可得可得圓心為,半徑,而圓心到直線距離為,

因此圓上點到直線的最短距離為,故選:C.【點睛】本題考查直線和圓的位置關(guān)系,點到直線的距離公式的應(yīng)用,求圓心到直線的距離是解題的關(guān)鍵,屬于中檔題.6、C【解析】

根據(jù)列方程,結(jié)合向量數(shù)量積的運算以及特殊角的三角函數(shù)值,求得與的夾角.【詳解】由于,故,所以,所以,故選C.【點睛】本小題主要考查兩個向量垂直的表示,考查向量數(shù)量積運算,考查特殊角的三角函數(shù)值,考查兩個向量夾角的求法,屬于基礎(chǔ)題.7、A【解析】

根據(jù)空間中直線與平面的位置關(guān)系,逐項進行判定,即可求解.【詳解】由題意,直線與平面相交,對于A中,平面內(nèi)與無交點的直線都與直線異面,所以有無數(shù)條,正確;對于B中,平面內(nèi)的直線與要么相交,要么異面,不可能平行,所以,錯誤;對于C中,平面內(nèi)有無數(shù)條平行直線與直線垂直,所以,錯誤;對于D中,由A知,D錯誤.故選A.【點睛】本題主要考查了直線與平面的位置關(guān)系的應(yīng)用,其中解答中熟記直線與平面的位置關(guān)系,合理判定是解答的關(guān)鍵,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.8、C【解析】

利用三角形中的正弦定理求出角B,利用三角形內(nèi)角和求出角C,再利用三角形的面積公式求出三角形的面積,求得結(jié)果.【詳解】因為中,,,,由正弦定理得:,所以,所以,所以,所以,故選C.【點睛】該題所考查的是有關(guān)三角形面積的求解問題,在解題的過程中,需要注意根據(jù)題中所給的條件,應(yīng)用正弦定理求得,從而求得,之后應(yīng)用三角形面積公式求得結(jié)果.9、A【解析】該立方體是正方體,切掉一個三棱柱,所以體積為,故選A。點睛:本題考查三視圖還原,并求體積。此類題關(guān)鍵就是三視圖的還原,還原過程中,本題采取切割法處理,有圖可知,該立方體應(yīng)該是正方體進行切割產(chǎn)生的,所以我們在畫圖的過程在,對正方體進行切割比較即可。10、A【解析】

本題等價于求過BC直線的平面截長方體的面積的取值范圍?!驹斀狻块L方體在平面內(nèi)的射影所構(gòu)成的圖形面積的取值范圍等價于,求過BC直線的平面截長方體的面積的取值范圍。由圖形知,,故選A.【點睛】將問題等價轉(zhuǎn)換為可視的問題。二、填空題:本大題共6小題,每小題5分,共30分。11、44.5【解析】

由莖葉圖直接可以求出甲的中位數(shù)和乙的平均數(shù),求和即可.【詳解】由莖葉圖知,甲加工零件個數(shù)的中位數(shù)為,乙加工零件個數(shù)的平均數(shù)為,則.【點睛】本題主要考查利用莖葉圖求中位數(shù)和平均數(shù).12、【解析】

求出面積的最大值,結(jié)合棱錐的體積可得到平面距離的最小值,進一步求得球的半徑的最小值得答案.【詳解】解:在中,由,且,

得,得.

當且僅當時,有最大值1.

過球心,且四面體的體積為1,

∴三棱錐的體積為.

則到平面的距離為.

此時的外接圓的半徑為,則球的半徑的最小值為,

∴球O的表面積的最小值為.

故答案為:.【點睛】本題考查多面體外接球表面積最值的求法,考查邏輯思維能力與推理運算能力,考查空間想象能力,是中檔題.13、【解析】

由兩角差的正弦公式以及誘導(dǎo)公式,即可求出的值.【詳解】,所以,因為,故.【點睛】本題主要考查兩角差的正弦公式的逆用以及誘導(dǎo)公式的應(yīng)用.14、π【解析】

根據(jù)正弦定理化簡角的關(guān)系式,從而湊出cosA【詳解】由正弦定理得:a2=則cos∵A∈0,π本題正確結(jié)果:π【點睛】本題考查利用正弦定理和余弦定理解三角形問題,屬于基礎(chǔ)題.15、1【解析】

若數(shù)列{an}為等差數(shù)列則Sm,S2m-Sm,S3m-S2m仍然成等差數(shù)列.所以S10,S20-S10,S30-S20仍然成等差數(shù)列.因為在等差數(shù)列{an}中有S10=10,S20=30,所以S30=1.故答案為1.16、3【解析】

利用向量共線的坐標公式,列式求解.【詳解】因為向量與向量共線,所以,故答案為:3.【點睛】本題考查向量共線的坐標公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)的最小值為,此時.【解析】

通過倍角公式,把化成標準形式,研究函數(shù)的相關(guān)性質(zhì)(周期性,單調(diào)性,奇偶性,對稱性,最值及最值相對于的變量),從而本題能順利完成【詳解】(1)因為.所以函數(shù)的最小正周期為.(2)當時,,此時,,,所以的最小值為,此時.【點睛】該類型考題關(guān)鍵是將化成性質(zhì),只有這樣,我們才能很好的去研究他的性質(zhì).18、(1);(2)眾數(shù)為度,中位數(shù)為度;(3)戶.【解析】

(1)利用頻率分布直方圖中所有矩形面積之和為可求得的值;(2)利用頻率分布直方圖中最高矩形底邊的中點值為眾數(shù),可得出該城市所有居民月平均用電量的眾數(shù),利用中位數(shù)左邊的矩形面積之和為可求得該城市所有居民月平均用電量的中位數(shù);(3)計算出月用電量在的用戶在月平均用電量為的用戶中所占的比例,乘以可得出結(jié)果.【詳解】(1)因為,所以;(2)月平均用電量眾數(shù)的估計值為度,,故中位數(shù),所以,,解得,故月平均用電量中位數(shù)的估計值為度;(3)月均用電量在、、、的用戶分別為戶、戶、戶、戶,其中,月均用電量為的用戶在月平均用電量為的用戶中所占的比例為,所以在月均用電量為的用戶中應(yīng)抽取(戶).【點睛】本題考查利用頻率分布直方圖求參數(shù)、中位數(shù)、眾數(shù),同時也考查了利用分層抽樣求樣本容量,考查計算能力,屬于基礎(chǔ)題.19、(Ⅰ)見解析(Ⅱ)見解析【解析】試題分析:(1)連,與交于,利用三角形的中位線,可得線線平行,從而可得線面平行;

(2)證明,即可證得平面平面.試題解析:(Ⅰ)連接AC交BD與O,連接EO,∵E、O分別為PA、AC的中點,∴EO∥PC,∵PC?平面EBD,EO?平面EBD∴PC∥平面EBD(Ⅱ)∵PD⊥平面ABCD,BC?平面ABCD,∴PD⊥BC,∵ABCD為正方形,∴BC⊥CD,∵PD∩CD=D,PD、CD?平面PCD∴BC⊥平面PCD,又∵BC?平面PBC,∴平面PBC⊥平面PCD.【點睛】本題考查線面平行,考查面面平行,掌握線面平行,面面平行的判定方法是關(guān)鍵.20、(1)(2);(3).【解析】

(1)先化簡函數(shù)f(x)的解析式,再求函數(shù)的最小正周期;(2)解不等式,即得函數(shù)的增區(qū)間;(3)根據(jù)三角函數(shù)的性質(zhì)求函數(shù)的值域.【詳解】(1)由題得,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論