版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
安徽省滁州市明光中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末檢測模擬試題注意事項(xiàng)1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準(zhǔn)考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認(rèn)真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準(zhǔn)考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項(xiàng)的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.幾位大學(xué)生響應(yīng)國家的創(chuàng)業(yè)號召,開發(fā)了一款應(yīng)用軟件.為激發(fā)大家學(xué)習(xí)數(shù)學(xué)的興趣,他們推出了“解數(shù)學(xué)題獲取軟件激活碼”的活動.這款軟件的激活碼為下面數(shù)學(xué)問題的答案:已知數(shù)列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一項(xiàng)是20,接下來的兩項(xiàng)是20,21,再接下來的三項(xiàng)是20,21,22,依此類推.求滿足如下條件的最小整數(shù)N:N>100且該數(shù)列的前N項(xiàng)和為2的整數(shù)冪.那么該款軟件的激活碼是A.440 B.330C.220 D.1102.設(shè)a,b,c均為不等于1的正實(shí)數(shù),則下列等式中恒成立的是A.B.C.D.3.如圖,是水平放置的的直觀圖,則的面積是()A.6 B. C. D.124.若函數(shù)局部圖象如圖所示,則函數(shù)的解析式為A. B.C. D.5.一組數(shù)平均數(shù)是,方差是,則另一組數(shù),的平均數(shù)和方差分別是()A. B.C. D.6.已知與均為單位向量,它們的夾角為,那么等于()A. B. C. D.47.設(shè)不等式組所表示的平面區(qū)域?yàn)?,在?nèi)任取一點(diǎn),的概率是()A. B. C. D.8.“”是“函數(shù)的圖像關(guān)于直線對稱”的()條件A.充分非必要 B.必要非充分 C.充要 D.既不充分又非必要9.某空間幾何體的三視圖如圖所示,則這個(gè)幾何體的體積等于()A.1 B.2 C.4 D.610.已知基本單位向量,,則的值為()A.1 B.5 C.7 D.25二、填空題:本大題共6小題,每小題5分,共30分。11.已知,則的最大值是____.12.設(shè)常數(shù),函數(shù),若的反函數(shù)的圖像經(jīng)過點(diǎn),則_______.13.函數(shù),函數(shù),若對所有的總存在,使得成立,則實(shí)數(shù)的取值范圍是__________.14.某校女子籃球隊(duì)7名運(yùn)動員身高(單位:cm)分布的莖葉圖如圖,已知記錄的平均身高為175cm,但記錄中有一名運(yùn)動員身高的末位數(shù)字不清晰,如果把其末位數(shù)字記為x,那么x的值為________.15.一個(gè)封閉的正三棱柱容器,該容器內(nèi)裝水恰好為其容積的一半(如圖1,底面處于水平狀態(tài)),將容器放倒(如圖2,一個(gè)側(cè)面處于水平狀態(tài)),這時(shí)水面與各棱交點(diǎn)分別為E,F(xiàn)、,,則的值是__________.16.已知函數(shù)fx=Asin三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù)(1)解不等式;(2)若對一切,不等式恒成立,求實(shí)數(shù)的取值范圍.18.已知,,,且.(1)若,求的值;(2)設(shè),,若的最大值為,求實(shí)數(shù)的值.19.已知圓的圓心在線段上,圓經(jīng)過點(diǎn),且與軸相切.(1)求圓的方程;(2)若直線與圓交于,兩點(diǎn),當(dāng)最小時(shí),求直線的方程及的最小值.20.扇形AOB中心角為,所在圓半徑為,它按如圖(Ⅰ)(Ⅱ)兩種方式有內(nèi)接矩形CDEF.(1)矩形CDEF的頂點(diǎn)C、D在扇形的半徑OB上,頂點(diǎn)E在圓弧AB上,頂點(diǎn)F在半徑OA上,設(shè);(2)點(diǎn)M是圓弧AB的中點(diǎn),矩形CDEF的頂點(diǎn)D、E在圓弧AB上,且關(guān)于直線OM對稱,頂點(diǎn)C、F分別在半徑OB、OA上,設(shè);試研究(1)(2)兩種方式下矩形面積的最大值,并說明兩種方式下哪一種矩形面積最大?21.近年來,鄭州經(jīng)濟(jì)快速發(fā)展,躋身新一線城市行列,備受全國矚目.無論是市內(nèi)的井字形快速交通網(wǎng),還是輻射全國的米字形高鐵路網(wǎng),鄭州的交通優(yōu)勢在同級別的城市內(nèi)無能出其右.為了調(diào)查鄭州市民對出行的滿意程度,研究人員隨機(jī)抽取了1000名市民進(jìn)行調(diào)查,并將滿意程度以分?jǐn)?shù)的形式統(tǒng)計(jì)成如下的頻率分布直方圖,其中.(I)求的值;(Ⅱ)求被調(diào)查的市民的滿意程度的平均數(shù),眾數(shù),中位數(shù);(Ⅲ)若按照分層抽樣從,中隨機(jī)抽取8人,再從這8人中隨機(jī)抽取2人,求至少有1人的分?jǐn)?shù)在的概率.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】由題意得,數(shù)列如下:則該數(shù)列的前項(xiàng)和為,要使,有,此時(shí),所以是第組等比數(shù)列的部分和,設(shè),所以,則,此時(shí),所以對應(yīng)滿足條件的最小整數(shù),故選A.點(diǎn)睛:本題非常巧妙地將實(shí)際問題和數(shù)列融合在一起,首先需要讀懂題目所表達(dá)的具體含義,以及觀察所給定數(shù)列的特征,進(jìn)而判斷出該數(shù)列的通項(xiàng)和求和.另外,本題的難點(diǎn)在于數(shù)列里面套數(shù)列,第一個(gè)數(shù)列的和又作為下一個(gè)數(shù)列的通項(xiàng),而且最后幾項(xiàng)并不能放在一個(gè)數(shù)列中,需要進(jìn)行判斷.2、B【解析】
根據(jù)對數(shù)運(yùn)算的規(guī)律一一進(jìn)行運(yùn)算可得答案.【詳解】解:由a,b,c≠1.考察對數(shù)2個(gè)公式:,,對選項(xiàng)A:,顯然與第二個(gè)公式不符,所以為假.對選項(xiàng)B:,顯然與第二個(gè)公式一致,所以為真.對選項(xiàng)C:,顯然與第一個(gè)公式不符,所以為假.對選項(xiàng)D:,同樣與第一個(gè)公式不符,所以為假.所以選B.【點(diǎn)睛】本題主要考查對數(shù)運(yùn)算的性質(zhì),熟練掌握對數(shù)運(yùn)算的各公式是解題的關(guān)鍵.3、D【解析】由直觀圖畫法規(guī)則,可得是一個(gè)直角三角形,直角邊,,故選D.4、D【解析】
由的部分圖象可求得A,T,從而可得,再由,結(jié)合的范圍可求得,從而可得答案.【詳解】,;又由圖象可得:,可得:,,,.,,又,當(dāng)時(shí),可得:,此時(shí),可得:故選D.【點(diǎn)睛】本題考查由的部分圖象確定函數(shù)解析式,常用五點(diǎn)法求得的值,屬于中檔題.5、B【解析】
直接利用公式:平均值方差為,則的平均值和方差為:得到答案.【詳解】平均數(shù)是,方差是,的平均數(shù)為:方差為:故答案選B【點(diǎn)睛】本題考查了平均數(shù)和方差的計(jì)算:平均數(shù)是,方差是,則的平均值和方差為:.6、A【解析】本題主要考查的是向量的求模公式.由條件可知==,所以應(yīng)選A.7、A【解析】作出約束條件所表示的平面區(qū)域,如圖所示,四邊形所示,作出直線,由幾何概型的概率計(jì)算公式知的概率,故選A.8、A【解析】
根據(jù)充分必要條件的判定,即可得出結(jié)果.【詳解】當(dāng)時(shí),是函數(shù)的對稱軸,所以“”是“函數(shù)的圖像關(guān)于直線對稱”的充分條件,當(dāng)函數(shù)的圖像關(guān)于直線對稱時(shí),,推不出,所以“”是“函數(shù)的圖像關(guān)于直線對稱”的不必要條件,綜上選.【點(diǎn)睛】本題主要考查了充分條件、必要條件,余弦函數(shù)的對稱軸,屬于中檔題.9、B【解析】
先由三視圖還原幾何體,再由題中數(shù)據(jù),結(jié)合棱錐的體積公式,即可得出結(jié)果.【詳解】由三視圖可得,該幾何體為底面是直角梯形,側(cè)棱垂直于底面的四棱錐,如圖所示:由題意可得其體積為:故選B【點(diǎn)睛】本題主要考查由幾何體的三視圖求幾何體的體積,熟記棱錐的結(jié)構(gòu)特征以及體積公式即可,屬于常考題型.10、B【解析】
計(jì)算出向量的坐標(biāo),再利用向量的求模公式計(jì)算出的值.【詳解】由題意可得,因此,,故選B.【點(diǎn)睛】本題考查向量模的計(jì)算,解題的關(guān)鍵就是求出向量的坐標(biāo),并利用坐標(biāo)求出向量的模,考查運(yùn)算求解能力,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、4【解析】
利用對數(shù)的運(yùn)算法則以及二次函數(shù)的最值化簡求解即可.【詳解】,,,則.當(dāng)且僅當(dāng)時(shí),函數(shù)取得最大值.【點(diǎn)睛】本題主要考查了對數(shù)的運(yùn)算法則應(yīng)用以及利用二次函數(shù)的配方法求最值.12、1【解析】
反函數(shù)圖象過(2,1),等價(jià)于原函數(shù)的圖象過(1,2),代點(diǎn)即可求得.【詳解】依題意知:f(x)=lg(x+a)的圖象過(1,2),∴l(xiāng)g(1+a)=2,解得a=1.故答案為:1【點(diǎn)睛】本題考查了反函數(shù),熟記其性質(zhì)是關(guān)鍵,屬基礎(chǔ)題.13、【解析】
分別求得f(x)、g(x)在[0,]上的值域,結(jié)合題意可得它們的值域間的包含關(guān)系,從而求得實(shí)數(shù)m的取值范圍.【詳解】∵f(x)=sin2x+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+),當(dāng)x∈[0,],2x+∈[,],∴2sin(2x+)∈[1,2],∴f(x)∈[1,2].對于g(x)=mcos(2x﹣)﹣2m+3(m>0),2x﹣∈[﹣,],mcos(2x﹣)∈[,m],∴g(x)∈[﹣+3,3﹣m].由于對所有的x2∈[0,]總存在x1∈[0,],使得f(x1)=g(x2)成立,可得[﹣+3,3﹣m]?[1,2],故有3﹣m≤2,﹣+3≥1,解得實(shí)數(shù)m的取值范圍是[1,].故答案為.【點(diǎn)睛】本題考查兩角和與差的正弦函數(shù),著重考查三角函數(shù)的性質(zhì)的運(yùn)用,考查二倍角的余弦,解決問題的關(guān)鍵是理解“對所有的x2∈[0,]總存在x1∈[0,],使得f(x1)=g(x2)成立”的含義,轉(zhuǎn)化為f(x)的值域是g(x)的子集.14、2【解析】
根據(jù)莖葉圖的數(shù)據(jù)和平均數(shù)的計(jì)算公式,列出方程,即可求解,得到答案.【詳解】由題意,可得,即,解得.【點(diǎn)睛】本題主要考查了莖葉圖的認(rèn)識和平均數(shù)的公式的應(yīng)用,其中解答中根據(jù)莖葉圖,準(zhǔn)確的讀取數(shù)據(jù),再根據(jù)數(shù)據(jù)的平均數(shù)的計(jì)算公式,列出方程求解是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.15、【解析】
設(shè),則,由題意得:,由此能求出的值.【詳解】設(shè),則,由題意得:,解得,.故答案為:.【點(diǎn)睛】本題考查兩線段比值的求法、三棱柱的體積等基礎(chǔ)知識,考查運(yùn)算求解能力,是中檔題.16、f【解析】分析:首先根據(jù)函數(shù)圖象得函數(shù)的最大值為2,得到A=2,然后算出函數(shù)的周期T=π,利用周期的公式,得到ω=2,最后將點(diǎn)(5π代入,得:2=2sin(2×5π12+φ所以fx的解析式是f詳解:根據(jù)函數(shù)圖象得函數(shù)的最大值為2,得A=2,又∵函數(shù)的周期34T=5π將點(diǎn)(5π12,2)代入,得:2=2sin所以fx的解析式是f點(diǎn)睛:本題給出了函數(shù)y=Asin(ωx+φ)的部分圖象,要確定其解析式,著重考查了三角函數(shù)基本概念和函數(shù)y=Asin(ωx+φ)的圖象與性質(zhì)的知識點(diǎn),屬于中檔題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)根據(jù)一元二次不等式的求解方法直接求解即可;(2)將問題轉(zhuǎn)化為恒成立的問題,通過基本不等式求得的最小值,則.【詳解】(1)或所求不等式解集為:(2)當(dāng)時(shí),可化為:又(當(dāng)且僅當(dāng),即時(shí)取等號)即的取值范圍為:【點(diǎn)睛】本題考查一元二次不等式的求解、恒成立問題的求解問題.解決恒成立問題的關(guān)鍵是通過分離變量的方式,將問題轉(zhuǎn)化為所求參數(shù)與函數(shù)最值之間的比較問題.18、(1)0(2)【解析】
(1)通過可以算出,移項(xiàng)、兩邊平方即可算出結(jié)果.(2)通過向量的運(yùn)算,解出,再通過最大值根的分布,求出的值.【詳解】(1)通過可以算出,即故答案為0.(2),設(shè),,,即的最大值為;①當(dāng)時(shí),(滿足條件);②當(dāng)時(shí),(舍);③當(dāng)時(shí),(舍)故答案為【點(diǎn)睛】當(dāng)式子中同時(shí)出現(xiàn)時(shí),常??梢岳脫Q元法,把用進(jìn)行表示,但計(jì)算過程中也要注意自變量的取值范圍;二次函數(shù)最值一定要注意對稱軸是否在規(guī)定區(qū)間范圍內(nèi),再討論最后的結(jié)果.19、(1)(2)的方程為,最小為【解析】
(1)設(shè)圓的方程為,由題意可得,求解即可得到圓的方程;(2)過定點(diǎn),當(dāng)直線與直線垂直時(shí),直線被圓截得的弦最小,求解即可.【詳解】解:(1)設(shè)圓的方程為,所以,解得所以圓的方程為.(2)直線的方程可化為點(diǎn)斜式,所以過定點(diǎn).又點(diǎn)在圓內(nèi),當(dāng)直線與直線垂直時(shí),直線被圓截得的弦最?。?yàn)?,所以的斜率,所以的方程為,即,因?yàn)椋?,所以.【點(diǎn)睛】求圓的弦長的常用方法幾何法:設(shè)圓的半徑為r,弦心距為d,弦長為l,則;②代數(shù)方法:運(yùn)用韋達(dá)定理及弦長公式:==.20、方式一最大值【解析】
試題分析:(1)運(yùn)用公式時(shí)要注意審查公式成立的條件,要注意和差、倍角的相對性,要注意升冪、降冪的靈活運(yùn)用;(2)重視三角函數(shù)的三變:三變指變角、變名、變式;變角:對角的分拆要盡可能化成同名、同角、特殊角;變名:盡可能減少函數(shù)名稱;變式:對式子變形一般要盡可能有理化、整式化、降低次數(shù)等,適當(dāng)選擇公式進(jìn)行變形;(3)把形如化為,可進(jìn)一步研究函數(shù)的周期、單調(diào)性、最值和對稱性.試題解析:解(1)在中,設(shè),則又當(dāng)即時(shí),(Ⅱ)令與的交點(diǎn)為,的交點(diǎn)為,則,于是,又當(dāng)即時(shí),取得最大值.,(Ⅰ)(Ⅱ)兩種方式下矩形面積的最大值為方式一:考點(diǎn):把實(shí)際問題轉(zhuǎn)化為三角函數(shù)求最值問題.21、(Ⅰ)(Ⅱ)平均數(shù)74.9,眾數(shù)75.14,中位數(shù)75;(Ш)【解析】
(I)根據(jù)頻率之和為列方程,結(jié)合求出的值.(II)利用各組中點(diǎn)值乘以頻率然后相加,求得平均數(shù).利用中位數(shù)是面積之和為的地方,列式求得中位數(shù).
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 保健按摩兼職業(yè)務(wù)員招聘合同
- 中小企業(yè)薪酬管理方案
- 通信工程安全施工協(xié)議
- 辦公大樓樁基施工合同范本
- 醫(yī)藥產(chǎn)品賠償協(xié)議
- 住宅小區(qū)安保人員招聘合同
- 體育館健身房改造敲墻協(xié)議
- 汽車維修車間電器安全規(guī)范
- 文化遺產(chǎn)展覽場地租賃協(xié)議
- 物流公司技術(shù)部門主管招聘協(xié)議
- 鐵血將軍、建軍元勛-葉挺 (1)講解
- 工勤保潔人員院感知識培訓(xùn)
- 2024年上海奉賢區(qū)高三年級上冊期末高考與等級考一模歷史試卷含答案
- 法律盡職調(diào)查服務(wù)方案
- 電設(shè)施安全隱患大排查大整治專項(xiàng)行動工作總結(jié)
- 高中美術(shù)-建筑藝術(shù)
- 國企職務(wù)犯罪預(yù)防
- 整本書閱讀教學(xué)策略
- 《大學(xué)生與誠信》課件
- 國內(nèi)電控柴油機(jī)技術(shù)發(fā)展概況
- 馬克思主義與社會科學(xué)方法論(研究生政治課程)復(fù)習(xí)重點(diǎn)
評論
0/150
提交評論