江蘇省丹陽市丹陽高級(jí)中學(xué)2024年高一下數(shù)學(xué)期末檢測(cè)模擬試題含解析_第1頁
江蘇省丹陽市丹陽高級(jí)中學(xué)2024年高一下數(shù)學(xué)期末檢測(cè)模擬試題含解析_第2頁
江蘇省丹陽市丹陽高級(jí)中學(xué)2024年高一下數(shù)學(xué)期末檢測(cè)模擬試題含解析_第3頁
江蘇省丹陽市丹陽高級(jí)中學(xué)2024年高一下數(shù)學(xué)期末檢測(cè)模擬試題含解析_第4頁
江蘇省丹陽市丹陽高級(jí)中學(xué)2024年高一下數(shù)學(xué)期末檢測(cè)模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

江蘇省丹陽市丹陽高級(jí)中學(xué)2024年高一下數(shù)學(xué)期末檢測(cè)模擬試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.已知,,則()A.1 B.2 C. D.32.在中,已知,,,則的形狀為()A.鈍角三角形 B.銳角三角形 C.直角三角形 D.不能確定3.在正方體中,直線與直線所成角是()A. B. C. D.4.如圖,在中,,點(diǎn)在邊上,且,則等于()A. B. C. D.5.《五曹算經(jīng)》是我國南北朝時(shí)期數(shù)學(xué)家甄鸞為各級(jí)政府的行政人員編撰的一部實(shí)用算術(shù)書.其第四卷第九題如下:“今有平地聚粟,下周三丈高四尺,問粟幾何?”其意思為“場(chǎng)院內(nèi)有圓錐形稻谷堆,底面周長(zhǎng)3丈,高4尺,那么這堆稻谷有多少斛?”已知1丈等于10尺,1斜稻谷的體積約為1.62立方尺,圓周率約為3,估算出堆放的稻谷約有()A.57.08斜 B.171.24斛 C.61.73斛 D.185.19斛6.設(shè),表示兩條直線,,表示兩個(gè)平面,則下列命題正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則7.對(duì)一切實(shí)數(shù),不等式恒成立.則的取值范圍是()A. B.C. D.8.已知在中,兩直角邊,,是內(nèi)一點(diǎn),且,設(shè),則()A. B. C.3 D.9.閱讀如圖的程序框圖,運(yùn)行該程序,則輸出的值為()A.3 B.1C.-1 D.010.已知,是兩條不同的直線,,是兩個(gè)不同的平面,則下列說法正確的是()A.若,,則 B.若,,,則C.若,,則 D.若,,則二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),數(shù)列滿足,,將數(shù)列的前100項(xiàng)從大到小排列得到數(shù)列,若,則k的值為______;12.已知等差數(shù)列則.13.已知正方體的棱長(zhǎng)為1,則三棱錐的體積為______.14.若(),則_______(結(jié)果用反三角函數(shù)值表示).15.________.16.已知,,與的夾角為鈍角,則的取值范圍是_____;三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知四棱錐,底面是邊長(zhǎng)為的菱形,,側(cè)面為正三角形,側(cè)面底面,為側(cè)棱的中點(diǎn),為線段的中點(diǎn)(Ⅰ)求證:平面;(Ⅱ)求證:;(Ⅲ)求三棱錐的體積18.在物理中,簡(jiǎn)諧運(yùn)動(dòng)中單擺對(duì)平衡位置的位移與時(shí)間的關(guān)系,交流電與時(shí)間的關(guān)系都是形如的函數(shù).已知電流(單位:)隨時(shí)間(單位:)變化的函數(shù)關(guān)系是:,(1)求電流變化的周期、頻率、振幅及其初相;(2)當(dāng),,,,(單位:)時(shí),求電流.19.已知函數(shù)f(x)=2sinxcosx﹣2sin2x,其中x∈R,(1)求函數(shù)f(x)的值域及最小正周期;(2)如圖,在四邊形ABCD中,AD=3,BD,f(A)=0,BC⊥BD,BC=5,求△ABC的面積S△ABC.20.已知直線l的方程為.(1)求過點(diǎn)且與直線l垂直的直線方程;(2)求直線與的交點(diǎn),且求這個(gè)點(diǎn)到直線l的距離.21.已知直線:在軸上的截距為,在軸上的截距為.(1)求實(shí)數(shù),的值;(2)求點(diǎn)到直線的距離.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解析】

根據(jù)向量的坐標(biāo)運(yùn)算法則直接求解.【詳解】因?yàn)?,所以,所以,故選:A.【點(diǎn)睛】本題考查向量的坐標(biāo)運(yùn)算,屬于基礎(chǔ)題.2、A【解析】

由正弦定理得出,從而得出可能為鈍角或銳角,分類討論這兩種情況,結(jié)合正弦函數(shù)的單調(diào)性即可判斷.【詳解】由正弦定理得可能為鈍角或銳角當(dāng)為鈍角時(shí),,符合題意,所以為鈍角三角形;當(dāng)為銳角時(shí),由于在區(qū)間上單調(diào)遞增,則,所以,即為鈍角三角形綜上,為鈍角三角形故選:A【點(diǎn)睛】本題主要考查了利用正弦定理判斷三角形的形狀,屬于中檔題.3、B【解析】

直線與直線所成角為,為等邊三角形,得到答案.【詳解】如圖所示:連接易知:直線與直線所成角為為等邊三角形,夾角為故答案選B【點(diǎn)睛】本題考查了異面直線夾角,意在考查學(xué)生的空間想象能力.4、C【解析】

在中,由余弦定理求得,在中,利用正弦定理求得BD,則可得CD.【詳解】在中,由余弦定理可得.又,故為直角三角形,故.因?yàn)?,且為銳角,故.由利用正弦定理可得,代值可得,故.故選:C.【點(diǎn)睛】本題考查利用正弦定理以及余弦定理解三角形,屬于綜合基礎(chǔ)題.5、C【解析】

根據(jù)圓錐的周長(zhǎng)求出底面半徑,再計(jì)算圓錐的體積,從而估算堆放的稻谷數(shù).【詳解】設(shè)圓錐形稻谷堆的底面半徑為尺,則底面周長(zhǎng)為尺,解得尺,又高為尺,所以圓錐的體積為(立方尺);又(斛,所以估算堆放的稻谷約有61.73(斛.故選:.【點(diǎn)睛】本題考查了椎體的體積計(jì)算問題,也考查了實(shí)際應(yīng)用問題,是基礎(chǔ)題.6、D【解析】

對(duì)選項(xiàng)進(jìn)行一一判斷,選項(xiàng)D為面面垂直判定定理.【詳解】對(duì)A,與可能異面,故A錯(cuò);對(duì)B,可能在平面內(nèi);對(duì)C,與平面可能平行,故C錯(cuò);對(duì)D,面面垂直判定定理,故選D.【點(diǎn)睛】本題考查空間中線、面位置關(guān)系,判斷一個(gè)命題為假命題,只要能舉出反例即可.7、A【解析】

時(shí),恒成立.時(shí),原不等式等價(jià)于.由的最小值是2,可得,即.選A.8、A【解析】分析:建立平面直角坐標(biāo)系,分別寫出B、C點(diǎn)坐標(biāo),由于∠DAB=60°,設(shè)D點(diǎn)坐標(biāo)為(m,),由平面向量坐標(biāo)表示,可求出λ和μ.詳解:如圖以A為原點(diǎn),以AB所在的直線為x軸,以AC所在的直線為y軸建立平面直角坐標(biāo)系,則B點(diǎn)坐標(biāo)為(1,0),C點(diǎn)坐標(biāo)為(0,2),因?yàn)椤螪AB=60°,設(shè)D點(diǎn)坐標(biāo)為(m,),=λ(1,0)+μ(0,2)=(λ,2μ)?λ=m,μ=,則.故選A.點(diǎn)睛:本題主要考察平面向量的坐標(biāo)表示,根據(jù)條件建立平面直角坐標(biāo)系,分別寫出各點(diǎn)坐標(biāo),屬于中檔題.9、D【解析】

從起始條件、開始執(zhí)行程序框圖,直到終止循環(huán).【詳解】,,,,,輸出.【點(diǎn)睛】本題是直到型循環(huán),只要滿足判斷框中的條件,就終止循環(huán),考查讀懂簡(jiǎn)單的程序框圖.10、D【解析】

試題分析:,是兩條不同的直線,,是兩個(gè)不同的平面,在A中:若,,則,相交、平行或異面,故A錯(cuò)誤;在B中:若,,,則,相交、平行或異面,故B錯(cuò)誤;在C中:若,,則或,故C誤;在D中:若,,由面面平行的性質(zhì)定理知,,故D正確.考點(diǎn):空間中直線、平面之間的位置關(guān)系.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據(jù)遞推公式利用數(shù)學(xué)歸納法分析出與的關(guān)系,然后考慮將的前項(xiàng)按要求排列,再根據(jù)項(xiàng)的序號(hào)計(jì)算出滿足的值即可.【詳解】由已知,a1=a,0<a<1;并且函數(shù)y=ax單調(diào)遞減;∵∴1>a2>a1∴,∴a2>a3>a1∵,且∴a2>a4>a3>a1……當(dāng)為奇數(shù)時(shí),用數(shù)學(xué)歸納法證明,當(dāng)時(shí),成立,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以即,所以時(shí)成立,所以為奇數(shù)時(shí),;當(dāng)為偶數(shù)時(shí),用數(shù)學(xué)歸納法證明,當(dāng)時(shí),成立,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以即,所以時(shí)成立,所以為偶數(shù)時(shí),;用數(shù)學(xué)歸納法證明:任意偶數(shù)項(xiàng)大于相鄰的奇數(shù)項(xiàng)即證:當(dāng)為奇數(shù),,當(dāng)時(shí),符合,設(shè)時(shí),,當(dāng)時(shí),因?yàn)?,結(jié)合的單調(diào)性,所以,所以,所以,所以時(shí)成立,所以當(dāng)為奇數(shù)時(shí),,據(jù)此可知:,當(dāng)時(shí),若,則有,此時(shí)無解;當(dāng)時(shí),此時(shí)的下標(biāo)成首項(xiàng)為公差為的等差數(shù)列,通項(xiàng)即為,若,所以,所以.故答案為:.【點(diǎn)睛】本題考查數(shù)列與函數(shù)的綜合應(yīng)用,難度較難.(1)分析數(shù)列的單調(diào)性時(shí),要注意到數(shù)列作為特殊的函數(shù),其定義域?yàn)椋?2)證明數(shù)列的單調(diào)性可從與的關(guān)系入手分析.12、1【解析】試題分析:根據(jù)公式,,將代入,計(jì)算得n=1.考點(diǎn):等差數(shù)列的通項(xiàng)公式.13、.【解析】

根據(jù)題意畫出正方體,由線段關(guān)系即可求得三棱錐的體積.【詳解】根據(jù)題意,畫出正方體如下圖所示:由棱錐的體積公式可知故答案為:【點(diǎn)睛】本題考查了三棱錐體積求法,通過轉(zhuǎn)換頂點(diǎn)法求棱錐的體積是常用方法,屬于基礎(chǔ)題.14、【解析】

根據(jù)反三角函數(shù)以及的取值范圍,求得的值.【詳解】由于,所以,所以.故答案為:【點(diǎn)睛】本小題主要考查已知三角函數(shù)值求角,考查反三角函數(shù),屬于基礎(chǔ)題.15、【解析】

直接利用兩角和與差的余弦函數(shù)公式及特殊角的三角函數(shù)值化簡(jiǎn),即可得到結(jié)果.【詳解】.故答案為:.【點(diǎn)睛】本題考查兩角和與差的余弦函數(shù)公式,以及特殊角的三角函數(shù)值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運(yùn)算求解能力.16、【解析】

與的夾角為鈍角,即數(shù)量積小于0.【詳解】因?yàn)榕c的夾角為鈍角,所以與的數(shù)量積小于0且不平行.且所以【點(diǎn)睛】本題考查兩向量的夾角為鈍角的坐標(biāo)表示,一定注意數(shù)量積小于0包括平角.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)【解析】

(Ⅰ)連接,交于點(diǎn);根據(jù)三角形中位線可證得;由線面平行判定定理可證得結(jié)論;(Ⅱ)由等腰三角形三線合一可知;由面面垂直的性質(zhì)可知平面;根據(jù)線面垂直性質(zhì)可證得結(jié)論;(Ⅲ)利用體積橋的方式將所求三棱錐體積轉(zhuǎn)化為;根據(jù)已知長(zhǎng)度和角度關(guān)系分別求得四邊形面積和高,代入得到結(jié)果.【詳解】(Ⅰ)證明:連接,交于點(diǎn)四邊形為菱形為中點(diǎn)又為中點(diǎn)平面,平面平面(Ⅱ)為正三角形,為中點(diǎn)平面平面,平面平面,平面平面,又平面(Ⅲ)為中點(diǎn)又,,由(Ⅱ)知,【點(diǎn)睛】本題考查立體幾何中線面平行、線線垂直關(guān)系的證明、三棱錐體積的求解問題;涉及到線面平行判定定理、面面垂直性質(zhì)定理和判定定理的應(yīng)用、體積橋的方式求解三棱錐體積等知識(shí),屬于??碱}型.18、(1)周期:,頻率:,振幅:,初相:;(2)當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),;當(dāng)時(shí),.【解析】

(1)按照函數(shù)的周期、頻率、振幅和初相的求法求解即可;(2)將,,,,分別代入函數(shù)關(guān)系中計(jì)算即可.【詳解】(1)周期:,頻率:,振幅:,初相:;(2)當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),,當(dāng)時(shí),.【點(diǎn)睛】本題考查函數(shù)模型在物理學(xué)中的應(yīng)用,考查對(duì)基礎(chǔ)知識(shí)的掌握,考查計(jì)算能力.19、(1)值域?yàn)閇﹣3,1],最小正周期為π;(2).【解析】

(1)化簡(jiǎn)f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,即可.(2)求得AAB,cos,可得△ABC的面積S△ABC.【詳解】(1)f(x)=2sinxcosx﹣2sin2xsin2x﹣22sin(2x)﹣1,函數(shù)f(x)的值域?yàn)閇﹣3,1]最小正周期為π;(2)∵f(A)=0,即sin(2A),∴A.在△ADB中,BD2=AD2+AB2﹣2AD?ABcosA?,解得ABcos,則sin∠ABC=cos.△ABC的面積S△ABC.【點(diǎn)睛】本題考查了三角恒等變形、三角形面積計(jì)算,考查余弦定理,意在考查計(jì)算能力,屬于中檔題.20、(1)(2)1【解析】

(1)與l垂直的直線方程可設(shè)為,再將點(diǎn)代入方程可得;(2)先求兩直線的交點(diǎn),再用點(diǎn)到直線的距離公式可得點(diǎn)到直線l的距離.【詳解】解:(1)設(shè)與直線垂直的直線方程為,把代入,得,解得,∴所求直線方程為.(2)解方程組得∴直線與的交點(diǎn)為,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論