版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆重慶市聚奎中學高一下數(shù)學期末監(jiān)測試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.《九章算術》中,將四個面均為直角三角形的三棱錐稱為鱉臑,若三棱錐為鱉臑,其中平面,,三棱錐的四個頂點都在球的球面上,則該球的體積是()A. B. C. D.2.等比數(shù)列的前項和為,若,則公比()A. B. C. D.3.從一批產(chǎn)品中取出三件產(chǎn)品,設事件為“三件產(chǎn)品全不是次品”,事件為“三件產(chǎn)品全是次品”,事件為“三件產(chǎn)品不全是次品”,則下列結論正確的是()A.事件與互斥 B.事件與互斥C.任何兩個事件均互斥 D.任何兩個事件均不互斥4.設是兩條不同的直線,是兩個不同的平面,則下列敘述正確的是()①若,則;②若,則;③若,則;④若,則.A.①② B.③④ C.①③ D.②④5.在△ABC中,AC,BC=1,∠B=45°,則∠A=()A.30° B.60° C.30°或150° D.60°或120°6.下列函數(shù)中,最小值為2的函數(shù)是()A. B.C. D.7.已知實數(shù)m,n滿足不等式組則關于x的方程x2-(3m+2n)x+6mn=0的兩根之和的最大值和最小值分別是()A.7,-4 B.8,-8C.4,-7 D.6,-68.同時擲兩枚骰子,所得點數(shù)之和為5的概率為()A. B. C. D.9.已知函數(shù),則()A.2 B.-2 C.1 D.-110.在中,邊,,分別是角,,的對邊,且滿足,若,則的值為A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.已知角滿足且,則角是第________象限的角.12.讀程序,完成下列題目:程序如圖:(1)若執(zhí)行程序時,沒有執(zhí)行語句,則輸入的的范圍是_______;(2)若執(zhí)行結果,輸入的的值可能是___.13.己知函數(shù),,則的值為______.14.對于0≤m≤4的任意m,不等式x2+mx>4x+m-3恒成立,則x的取值范圍是________________.15.在中,、、所對的邊依次為、、,且,若用含、、,且不含、、的式子表示,則_______.16.已知正三棱錐的底面邊長為6,所在直線與底面所成角為60°,則該三棱錐的側(cè)面積為_______.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.如右圖,某貨輪在A處看燈塔B在貨輪的北偏東75°,距離為nmile,在A處看燈塔C在貨輪的北偏西30°,距離為nmile,貨輪由A處向正北航行到D處時,再看燈塔B在北偏東120°,求:(1)A處與D處的距離;(2)燈塔C與D處的距離.18.已知函數(shù)的最小正周期為,且該函數(shù)圖象上的最低點的縱坐標為.(1)求函數(shù)的解析式;(2)求函數(shù)的單調(diào)遞增區(qū)間及對稱軸方程.19.四棱錐中,底面是邊長為2的菱形,,是等邊三角形,為的中點,.(Ⅰ)求證:;(Ⅱ)若,能否在棱上找到一點,使平面平面?若存在,求的長.20.精準扶貧是鞏固溫飽成果、加快脫貧致富、實現(xiàn)中華民族偉大“中國夢”的重要保障.某地政府在對某鄉(xiāng)鎮(zhèn)企業(yè)實施精準扶貧的工作中,準備投入資金將當?shù)剞r(nóng)產(chǎn)品進行二次加工后進行推廣促銷,預計該批產(chǎn)品銷售量萬件(生產(chǎn)量與銷售量相等)與推廣促銷費萬元之間的函數(shù)關系為(其中推廣促銷費不能超過5千元).已知加工此農(nóng)產(chǎn)品還要投入成本萬元(不包括推廣促銷費用),若加工后的每件成品的銷售價格定為元/件.(1)試將該批產(chǎn)品的利潤萬元表示為推廣促銷費萬元的函數(shù);(利潤=銷售額-成本-推廣促銷費)(2)當推廣促銷費投入多少萬元時,此批產(chǎn)品的利潤最大?最大利潤為多少?21.設數(shù)列的前項和為,若且求若數(shù)列滿足,求數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】
根據(jù)三棱錐的結構特征和線面位置關系,得到中點為三棱錐的外接球的球心,求得球的半徑,利用球的體積公式,即可求解.【詳解】由題意,如圖所示,因為,且為直角三角形,所以,又因為平面,所以,則平面,得.又由,所以中點為三棱錐的外接球的球心,則外接球的半徑.所以該球的體積是.故選A.【點睛】本題考查了有關球的組合體問題,以及三棱錐的體積的求法,解答時要認真審題,注意球的性質(zhì)的合理運用,求解球的組合體問題常用方法有(1)三條棱兩兩互相垂直時,可恢復為長方體,利用長方體的體對角線為外接球的直徑,求出球的半徑;(2)利用球的截面的性質(zhì),根據(jù)勾股定理列出方程求解球的半徑.2、A【解析】
將轉(zhuǎn)化為關于的方程,解方程可得的值.【詳解】∵,∴,又,∴.故選A.【點睛】本題考查等比數(shù)列的基本運算,等比數(shù)列中共有五個量,其中是基本量,這五個量可“知三求二”,求解的實質(zhì)是解方程或解方程組.3、B【解析】
根據(jù)互斥事件的定義,逐個判斷,即可得出正確選項.【詳解】為三件產(chǎn)品全不是次品,指的是三件產(chǎn)品都是正品,為三件產(chǎn)品全是次品,為三件產(chǎn)品不全是次品,它包括一件次品,兩件次品,三件全是正品三個事件由此知:與是互斥事件;與是包含關系,不是互斥事件;與是互斥事件,故選B.【點睛】本題主要考查互斥事件定義的應用.4、D【解析】可以線在平面內(nèi),③可以是兩相交平面內(nèi)與交線平行的直線,②對④對,故選D.5、A【解析】
直接利用正弦定理求出sinA的大小,根據(jù)大邊對大角可求A為銳角,即可得解A的值.【詳解】因為:△ABC中,BC=1,AC,∠B=45°,所以:,sinA.因為:BC<AC,可得:A為銳角,所以:A=30°.故選:A.【點評】本題考查正弦定理在解三角形中的應用,考查計算能力,屬于基礎題.6、C【解析】
利用基本不等式及函數(shù)的單調(diào)性即可判斷.【詳解】解:對于.時,,故錯誤.對于.,可得,,當且僅當,即時取等號,故最小值不可能為1,故錯誤.對于,可得,,當且僅當時取等號,最小值為1.對于.,函數(shù)在上單調(diào)遞增,在上單調(diào)遞減,,故不對;故選:.【點睛】本題考查基本不等式,難點在于應用基本不等式時對“一正二定三等”條件的理解與靈活應用,屬于中檔題.7、A【解析】由題意得,方程的兩根之和,畫出約束條件所表示的平面區(qū)域,如圖所示,由,可得,此時,由,可得,此時,故選A.8、C【解析】
求出基本事件空間,找到符合條件的基本事件,可求概率.【詳解】同時擲兩枚骰子,所有可能出現(xiàn)的結果有:共有36種,點數(shù)之和為5的基本事件有:共4種;所以所求概率為.故選C.【點睛】本題主要考查古典概率的求解,側(cè)重考查數(shù)學建模的核心素養(yǎng).9、B【解析】
根據(jù)分段函數(shù)的表達式,直接代入即可得到結論.【詳解】由分段函數(shù)的表達式可知,則,故選:.【點睛】本題主要考查函數(shù)值的計算,根據(jù)分段函數(shù)的表達式求解是解決本題的關鍵,屬于容易題.10、A【解析】
利用正弦定理把題設等式中的邊換成角的正弦,進而利用兩角和公式化簡整理可得的值,由可得的值【詳解】在中,由正弦定理可得化為:即在中,,故,可得,即故選【點睛】本題以三角形為載體,主要考查了正弦定理,向量的數(shù)量積的運用,考查了兩角和公式,考查了分析問題和解決問題的能力,屬于中檔題。二、填空題:本大題共6小題,每小題5分,共30分。11、三【解析】
根據(jù)三角函數(shù)在各個象限的符號,確定所在象限.【詳解】由于,所以為第三、第四象限角;由于,所以為第二、第三象限角.故為第三象限角.故答案為:三【點睛】本小題主要考查三角函數(shù)在各個象限的符號,屬于基礎題.12、2【解析】
(1)不執(zhí)行語句,說明不滿足條件,,從而得;(2)執(zhí)行程序,有當時,,只有,.【詳解】(1)不執(zhí)行語句,說明不滿足條件,,故有.(2)當時,,只有,.故答案為:(1)(2);【點睛】本題主要考察程序語言,考查對簡單程序語言的閱讀理解,屬于基礎題.13、1【解析】
將代入函數(shù)計算得到答案.【詳解】函數(shù)故答案為:1【點睛】本題考查了三角函數(shù)的計算,屬于簡單題.14、(-∞,-1)∪(3,+∞)【解析】不等式可化為m(x-1)+x2-4x+3>0在0≤m≤4時恒成立.令f(m)=m(x-1)+x2-4x+3.則??即x<-1或x>3.故答案為(-∞,-1)∪(3,+∞)15、【解析】
利用誘導公式,二倍角公式,余弦定理化簡即可得解.【詳解】.故答案為.【點睛】本題主要考查了誘導公式,二倍角的三角函數(shù)公式,余弦定理,屬于中檔題.16、【解析】
畫出圖形,過P做底面的垂線,垂足O落在底面正三角形中心,即,因為,即可求出,所以.【詳解】作于,因為為正三棱錐,所以,為中點,連結,則,過作⊥平面,則點為正三角形的中心,點在上,所以,,正三角形的邊長為6,則,,,斜高,三棱錐的側(cè)面積為:【點睛】此題考查正三棱錐,即底面為正三角形,側(cè)面為等腰三角形的三棱錐,正四面體為四個面都是正三角形,畫出圖像,屬于簡單的立體幾何題目.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)24;(2)8【解析】
(1)利用已知條件,利用正弦定理求得AD的長.(2)在△ADC中由余弦定理可求得CD,答案可得.【詳解】(1)在△ABD中,由已知得∠ADB=60°,B=45°由正弦定理得(2)在△ADC中,由余弦定理得CD2=AD2+AC2﹣2AD?ACcos30°,解得CD=.所以A處與D處之間的距離為24nmile,燈塔C與D處之間的距離為nmile.【點睛】點睛:解三角形應用題的一般步驟(1)閱讀理解題意,弄清問題的實際背景,明確已知與未知,理清量與量之間的關系.(2)根據(jù)題意畫出示意圖,將實際問題抽象成解三角形問題的模型.(3)根據(jù)題意選擇正弦定理或余弦定理求解.(4)將三角形問題還原為實際問題,注意實際問題中的有關單位問題、近似計算的要求等.18、(1);(2)增區(qū)間是,對稱軸為【解析】
(1)由周期求得ω,再由函數(shù)圖象上的最低點的縱坐標為﹣3求得A,則函數(shù)解析式可求;(2)直接利用復合函數(shù)的單調(diào)性求函數(shù)f(x)的單調(diào)遞增區(qū)間,再由2x求解x可得函數(shù)f(x)的對稱軸方程.【詳解】(1)因為的最小正周期為因為,,,∴.又函數(shù)圖象上的最低點縱坐標為,且∴∴.(2)由,可得可得單調(diào)遞增區(qū)間.由,得.所以函數(shù)的對稱軸方程為.【點睛】本題考查函數(shù)解析式的求法,考查y=Asin(ωx+φ)型函數(shù)的性質(zhì),是基礎題.19、(Ⅰ)見解析;(Ⅱ).【解析】
(Ⅰ)連接,根據(jù)三角形性質(zhì)可得,由底面菱形的線段角度關系可證明,即證明平面,從而證明.(Ⅱ)易證平面平面,連接交于點,過作交于,即可證明平面,在三角形【詳解】(Ⅰ)證明:連接,是等邊三角形,為的中點,所以;又底面是菱形,,所以,,所以平面,平面,所以.(Ⅱ)由(Ⅰ)知,,所以平面,又平面即平面平面平面平面,又,所以平面連接交于點,過作交于,如下圖所示:所以平面,又平面所以平面平面因為,所以,即在等邊三角形中,可得在菱形中,由余弦定理可得在中,可得所以【點睛】本題考查了直線與平面垂直的判定方法,平面與平面垂直的判定及性質(zhì)的應用,余弦定理在解三角形中的用法,屬于中檔題.20、(1);(2)當推廣促銷費投入3萬元時,利潤最大,最大利潤為27萬元.【解析】試題分析:⑴根據(jù)題意即可求得,化簡即可;⑵利用基本不等式可以求出該函數(shù)的最值,注意等號成立的條件,即可得到答案;解析:(1)由題意知∴.(2)∵∴
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專業(yè)選擇講座模板
- 2025年度茶葉產(chǎn)品溯源體系建設合同范本4篇
- 2025年度場化項目服務類采購項目合同附件定制版4篇
- 2025年度電競主題商鋪租賃合作協(xié)議4篇
- 2025年度生態(tài)環(huán)保園區(qū)場地委托出租與環(huán)保技術服務合同樣本4篇
- 專業(yè)技能提升課程2024培訓協(xié)議
- 人教版九年級化學上冊第1章開啟化學之門《第2節(jié) 化學研究什么》公開示范課教學課件
- 二零二四事業(yè)單位聘用合同四種類別適用范圍與條件3篇
- 2025年度文化演藝中心場地租用協(xié)議范本4篇
- 2025年度城市綜合體項目場地購置合同示范文本4篇
- 【傳媒大學】2024年新營銷
- 乳腺癌的綜合治療及進展
- 【大學課件】基于BGP協(xié)議的IP黑名單分發(fā)系統(tǒng)
- 2025屆廣東省佛山市高三上學期普通高中教學質(zhì)量檢測(一模)英語試卷(無答案)
- 自身免疫性腦炎課件
- 人力資源管理各崗位工作職責
- 信陽農(nóng)林學院《新媒體傳播學》2023-2024學年第一學期期末試卷
- 2024建筑公司年終工作總結(32篇)
- 信息安全意識培訓課件
- 2024年項目投資計劃書(三篇)
- 配電安規(guī)課件
評論
0/150
提交評論