山東省濟南市長清區(qū)2024屆數(shù)學高一下期末達標檢測試題含解析_第1頁
山東省濟南市長清區(qū)2024屆數(shù)學高一下期末達標檢測試題含解析_第2頁
山東省濟南市長清區(qū)2024屆數(shù)學高一下期末達標檢測試題含解析_第3頁
山東省濟南市長清區(qū)2024屆數(shù)學高一下期末達標檢測試題含解析_第4頁
山東省濟南市長清區(qū)2024屆數(shù)學高一下期末達標檢測試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省濟南市長清區(qū)2024屆數(shù)學高一下期末達標檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.某幾何體的三視圖如圖所示,則它的體積是()A.B.C.D.2.已知扇形的面積為2cm2,扇形圓心角θ的弧度數(shù)是4,則扇形的周長為()A.2cm B.4cm C.6cm D.8cm3.已知為三條不同直線,為三個不同平面,則下列判斷正確的是()A.若,,,,則B.若,,則C.若,,,則D.若,,,則4.已知數(shù)列中,,,則等于()A. B. C. D.5.在ABC中,.則的取值范圍是()A.(0,] B.[,) C.(0,] D.[,)6.設,則下列結論正確的是()A. B. C. D.7.已知中,,,,則B等于()A. B.或 C. D.或8.在等比數(shù)列中,,,則()A. B.C. D.9.將函數(shù)的圖象向左平移個長度單位后,所得到的圖象關于軸對稱,則的最小值是()A. B. C. D.10.已知是圓上的三點,()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.將正偶數(shù)按下表排列成列,每行有個偶數(shù)的蛇形數(shù)列(規(guī)律如表中所示),則數(shù)字所在的行數(shù)與列數(shù)分別是_______________.第列第列第列第列第列第行第行第行第行……12.將函數(shù)的圖象向左平移個單位長度,得到函數(shù)的圖象,則__________.13.設等比數(shù)列的首項為,公比為,所有項和為1,則首項的取值范圍是____________.14.在上定義運算,則不等式的解集為_____.15.已知,,若,則____16.已知函數(shù)是定義域為的偶函數(shù).當時,,關于的方程,有且僅有5個不同實數(shù)根,則實數(shù)的取值范圍是_____.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知a,b,c分別為ΔABC三個內(nèi)角A,B,C的對邊,且.(1)求角A的大小;(2)若,且ΔABC的面積為,求a的值;(3)若,求的范圍.18.已知數(shù)列中,,.(1)求數(shù)列的通項公式:(2)設,求數(shù)列的通項公式及其前項和.19.已知數(shù)列滿足,.(1)求證:數(shù)列為等比數(shù)列,并求數(shù)列的通項公式;(2)令,求數(shù)列的前項和.20.總書記在黨的十九大報告中指出,要在“幼有所育、學有所教、勞有所得、病有所醫(yī)、老有所養(yǎng)、住有所居、弱有所扶”上不斷取得新進展,保證全體人民在共建共享發(fā)展中有更多獲得感.現(xiàn)S市政府針對全市10所由市財政投資建設的敬老院進行了滿意度測評,得到數(shù)據(jù)如下表:敬老院ABCDEFGHIK滿意度x(%)20342519262019241913投資原y(萬元)80898978757165626052(1)求投資額關于滿意度的相關系數(shù);(2)我們約定:投資額關于滿意度的相關系數(shù)的絕對值在0.75以上(含0.75)是線性相關性較強,否則,線性相關性較弱.如果沒有達到較強線性相關,則采取“末位淘汰”制(即滿意度最低的敬老院市財政不再繼續(xù)投資,改為區(qū)財政投資).求在剔除“末位淘汰”的敬老院后投資額關于滿意度的線性回歸方程(系數(shù)精確到0.1)參考數(shù)據(jù):,,,,.附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計公式分別為:.線性相關系數(shù).21.已知數(shù)列滿足.(1)若,證明:數(shù)列是等比數(shù)列,求的通項公式;(2)求的前項和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解析】根據(jù)已知的三視圖想象出空間幾何體,然后由幾何體的組成和有關幾何體體積公式進行計算.由幾何體的三視圖可知幾何體為一個組合體,即一個正方體中間去掉一個圓錐體,所以它的體積是.2、C【解析】設扇形的半徑為R,則R2θ=2,∴R2=1R=1,∴扇形的周長為2R+θ·R=2+4=6(cm).3、C【解析】

根據(jù)線線位置關系,線面位置關系,以及面面位置關系,逐項判斷,即可得出結果.【詳解】A選項,當時,由,可得,此時由,可得或或與相交;所以A錯誤;B選項,若,,則,或相交,或異面;所以B錯誤;C選項,若,,,根據(jù)線面平行的性質,可得,所以C正確;D選項,若,,則或,又,則,或相交,或異面;所以D錯誤;故選C【點睛】本題主要考查線面,面面有關命題的判定,熟記空間中點線面位置關系即可,屬于??碱}型.4、A【解析】

變形為,利用累加法和裂項求和計算得到答案.【詳解】故選:A【點睛】本題考查了累加法和裂項求和,意在考查學生對于數(shù)列方法的靈活應用.5、C【解析】

試題分析:由于,根據(jù)正弦定理可知,故.又,則的范圍為.故本題正確答案為C.考點:三角形中正余弦定理的運用.6、B【解析】

利用不等式的性質,即可求解,得到答案.【詳解】由題意知,根據(jù)不等式的性質,兩邊同乘,可得成立.故選:B.【點睛】本題主要考查了不等式的性質及其應用,其中解答中熟記不等式的基本性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7、D【解析】

根據(jù)題意和正弦定理求出sinB的值,由邊角關系、內(nèi)角的范圍、特殊角的三角函數(shù)值求出B.【詳解】由題意得,△ABC中,a=1,,A=30°,由得,sinB,又b>a,0°<B<180°,則B=60°或B=120°,故選:D.【點睛】本題考查正弦定理,以及邊角關系的應用,注意內(nèi)角的范圍,屬于基礎題.8、B【解析】

設等比數(shù)列的公比為,由等比數(shù)列的定義知與同號,再利用等比中項的性質可求出的值.【詳解】設等比數(shù)列的公比為,則,,.由等比中項的性質可得,因此,,故選:B.【點睛】本題考查等比中項性質的應用,同時也要利用等比數(shù)列的定義判斷出項的符號,考查運算求解能力,屬于中等題.9、B【解析】

試題分析:由題意得,,令,可得函數(shù)的圖象對稱軸方程為,取是軸右側且距離軸最近的對稱軸,因為將函數(shù)的圖象向左平移個長度單位后得到的圖象關于軸對稱,的最小值為,故選B.考點:兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質.【方法點晴】本題主要考查了兩角和與差的正弦函數(shù)及三角函數(shù)的圖象與性質,將三角函數(shù)圖象向左平移個單位,所得圖象關于軸對稱,求的最小值,著重考查了三角函數(shù)的化簡、三角函數(shù)圖象的對稱性等知識的靈活應用,本題的解答中利用輔助角公式,化簡得到函數(shù),可取出函數(shù)的對稱軸,確定距離最近的點,即可得到結論.10、C【解析】

先由等式,得出,并計算出,以及與的夾角為,然后利用平面向量數(shù)量積的定義可計算出的值.【詳解】由于是圓上的三點,,則,,故選C.【點睛】本題考查平面向量的數(shù)量積的計算,解題的關鍵就是要確定向量的模和夾角,考查計算能力,屬于中等題.二、填空題:本大題共6小題,每小題5分,共30分。11、行列【解析】

設位于第行第列,觀察表格中數(shù)據(jù)的規(guī)律,可得出,由此可求出的值,再觀察奇數(shù)行和偶數(shù)行最小數(shù)的排列,可得出的值,由此可得出結果.【詳解】設位于第行第列,由表格中的數(shù)據(jù)可知,第行最大的數(shù)為,則,解得,由于第行最大的數(shù)為,所以,是表格中第行最小的數(shù),由表格中的規(guī)律可知,奇數(shù)行最小的數(shù)放在第列,那么.因此,位于表格中第行第列.故答案為:行列.【點睛】本題考查歸納推理,解題的關鍵就是要結合表格中數(shù)據(jù)所呈現(xiàn)的規(guī)律來進行推理,考查推理能力,屬于中等題.12、【解析】

先利用輔助角公式將函數(shù)的解析式化簡,根據(jù)三角函數(shù)的變化規(guī)律求出函數(shù)的解析式,即可計算出的值.【詳解】,由題意可得,因此,,故答案為.【點睛】本題考查輔助角公式化簡、三角函數(shù)圖象變換,在三角圖象相位變換的問題中,首先應該將三角函數(shù)的解析式化為(或)的形式,其次要注意左加右減指的是在自變量上進行加減,考查計算能力,屬于中等題.13、【解析】

由題意可得得且,可得首項的取值范圍.【詳解】解:由題意得:,,故答案為:.【點睛】本題主要考查等比數(shù)列前n項的和、數(shù)列極限的運算,屬于中檔題.14、【解析】

根據(jù)定義運算,把化簡得,求出其解集即可.【詳解】因為,所以,即,得,解得:故答案為:.【點睛】本題考查新定義,以及解一元二次不等式,考查運算的能力,屬于基礎題.15、【解析】

由,,得的坐標,根據(jù)得,由向量數(shù)量積的坐標表示即可得結果.【詳解】∵,,∴又∵,∴,即,所以,解得,故答案為.【點睛】本題主要考查了向量的坐標運算,兩向量垂直與數(shù)量積的關系,屬于基礎題.16、.【解析】

令,則原方程為,根據(jù)原方程有且僅有5個不同實數(shù)根,則有5個不同的解,結合圖像特征,求出的值或范圍,即為方程解的值或范圍,轉化為范圍,即可求解.【詳解】令,則原方程為,當時,,且為偶函數(shù),做出圖像,如下圖所示:當時,有一個解;當或,有兩個解;當時,有四個解;當或時,無解.,有且僅有5個不同實數(shù)根,關于的方程有一個解為,,另一個解為,在區(qū)間上,所以,實數(shù)的取值范圍是.故答案為:.【點睛】本題考查復合方程根的個數(shù)求參數(shù)范圍,考查了分段函數(shù)的應用,利用換元法結合的函數(shù)的奇偶性的對稱性,利用數(shù)形結合是解題的關鍵,屬于難題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解析】

(1)利用正弦定理化簡即得A的大??;(2)先求出bc,b+c的值,再利用余弦定理求出a的值;(3)先求出,再利用三角函數(shù)的性質求b+c的范圍.【詳解】(1)由正弦定理得,,即...(2)由可得.∴由余弦定理得:(3)由正弦定理得若,則因為所以所以.所以的范圍【點睛】本題主要考查正弦定理余弦定理解三角形,考查三角函數(shù)最值的求法,意在考查學生對這些知識的理解掌握水平和分析推理能力,屬于中檔題.18、(1)(2),【解析】

(1)利用累加法得到答案.(2)計算,利用裂項求和得到前項和.【詳解】(1)由題意可知左右累加得.(2).【點睛】本題考查了數(shù)列的累加法,裂項求和法,是數(shù)列的??碱}型.19、(1);(2)【解析】

(1)由知:,利用等比數(shù)列的通項公式即可得出;(2)bn=|11﹣2n|,設數(shù)列{11﹣2n}的前n項和為Tn,則.當n≤5時,Sn=Tn;當n≥6時,Sn=2S5﹣Tn.【詳解】(1)證明:由知,所以數(shù)列是以為首項,為公比的等比數(shù)列.則,.(2),設數(shù)列前項和為,則,當時,;當時,;所以.【點睛】本題考查了等比數(shù)列與等差數(shù)列的通項公式及其前n項和公式、分類討論方法,考查了推理能力與計算能力,屬于中檔題.20、(1)0.72;(2)【解析】

(1)由題意,根據(jù)相關系數(shù)的公式,可得的值,即可求解;(2)由(1)可知,得投資額關于滿意度沒有達到較強線性相關,利用公式求得的值,即可得出回歸直線的方程.【詳解】(1)由題意,根據(jù)相關系數(shù)的公式,可得.(2)由(1)可知,因為,所以投資額關于滿意度沒有達到較強線性相關,所以要“末位淘汰”掉K敬老院.重新計算得,,,,所以,.所以所求線性回歸方程為.【點睛】本題主要考查了回歸分析的應用,同時考查了回歸系數(shù)的計算,以及回歸直線方程的求解,其中

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論