四川省資陽市樂至縣寶林中學2024屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題含解析_第1頁
四川省資陽市樂至縣寶林中學2024屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題含解析_第2頁
四川省資陽市樂至縣寶林中學2024屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題含解析_第3頁
四川省資陽市樂至縣寶林中學2024屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題含解析_第4頁
四川省資陽市樂至縣寶林中學2024屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

四川省資陽市樂至縣寶林中學2024屆高一數(shù)學第二學期期末學業(yè)質量監(jiān)測模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.我國魏晉時期的數(shù)學家劉徽,創(chuàng)立了用圓內接正多邊形面積無限逼近圓面積的方法,稱為“割圓術”,為圓周率的研究提供了科學的方法.在半徑為1的圓內任取一點,則該點取自圓內接正十二邊形外的概率為A. B.C. D.2.已知平面上四個互異的點、、、滿足:,則的形狀一定是()A.等邊三角形 B.直角三角形 C.等腰三角形 D.鈍角三角形3.設,則()A.3 B.2 C.1 D.04.已知等比數(shù)列的公比,該數(shù)列前9項的乘積為1,則()A.8 B.16 C.32 D.645.定義運算,設,若,,,則的值域為()A. B. C. D.6.已知向量,.且,則()A.2 B. C. D.7.下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則8.已知,則的值構成的集合為()A. B. C. D.9.的值等于()A. B.- C. D.-10.已知,是兩個不同的平面,給出下列四個條件:①存在一條直線,使得,;②存在兩條平行直線,,使得,,,;③存在兩條異面直線,,使得,,,;④存在一個平面,使得,.其中可以推出的條件個數(shù)是()A.1 B.2 C.3 D.4二、填空題:本大題共6小題,每小題5分,共30分。11.在中,,,點為延長線上一點,,連接,則=______.12.有一個底面半徑為2,高為2的圓柱,點,分別為這個圓柱上底面和下底面的圓心,在這個圓柱內隨機取一點P,則點P到點或的距離不大于1的概率是________.13.設當時,函數(shù)取得最大值,則______.14.角的終邊經(jīng)過點,則___________________.15.過點作圓的切線,則切線的方程為_____.16.觀察下列等式:(1);(2);(3);(4),……請你根據(jù)給定等式的共同特征,并接著寫出一個具有這個共同特征的等式(要求與已知等式不重復),這個等式可以是__________________.(答案不唯一)三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.愛心超市計劃按月訂購一種酸奶,每天進貨量相同,進貨成本每瓶4元,售價每瓶6元,未售出的酸奶降價處理,以每瓶2元的價格當天全部處理完根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫單位:有關如果最高氣溫不低于25,需求量為500瓶;如果最高氣溫位于區(qū)間,需求量為300瓶;如果最高氣溫低于20,需求量為200瓶為了確定六月份的訂購計劃,統(tǒng)計了前三年六月份每天的最高氣溫數(shù)據(jù),得到下面的頻數(shù)分布表:最高氣溫天數(shù)216362574(1)求六月份這種酸奶一天的需求量不超過300瓶的頻率;(2)當六月份有一天這種酸奶的進貨量為450瓶時,求這一天銷售這種酸奶的平均利潤(單位:元)18.在中,分別是所對的邊,若的面積是,,.求的長.19.半期考試后,班長小王統(tǒng)計了50名同學的數(shù)學成績,繪制頻率分布直方圖如圖所示.根據(jù)頻率分布直方圖,估計這50名同學的數(shù)學平均成績;用分層抽樣的方法從成績低于115的同學中抽取6名,再在抽取的這6名同學中任選2名,求這兩名同學數(shù)學成績均在中的概率.20.在中,內角、、所對的邊分別為,,,且滿足.(1)求角的大?。唬?)若,是方程的兩根,求的值.21.在中,角所對的邊分別為,滿足(1)求的值;(2)若,求b的取值范圍.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

由半徑為1的圓內接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,求得十二邊形的面積,利用面積比的幾何概型,即可求解.【詳解】由題意,半徑為1的圓內接正十二邊形,可分割為12個頂角為,腰為1的等腰三角形,所以該正十二邊形的面積為,由幾何概型的概率計算公式,可得所求概率,故選D.【點睛】本題主要考查了幾何概型的概率的計算問題,解決此類問題的步驟:求出滿足條件A的基本事件對應的“幾何度量”,再求出總的基本事件對應的“幾何度量”,然后根據(jù)求解,著重考查了分析問題和解答問題的能力.2、C【解析】

由向量的加法法則和減法法則化簡已知表達式,再由向量的垂直和等腰三角形的三線合一性質得解.【詳解】設邊的中點,則所以在中,垂直于的中線,所以是等腰三角形.故選C.【點睛】本題考查向量的線性運算和數(shù)量積,屬于基礎題.3、B【解析】

先求內層函數(shù),將所求值代入分段函數(shù)再次求解即可【詳解】,則故選:B【點睛】本題考查分段函數(shù)具體函數(shù)值的求法,屬于基礎題4、B【解析】

先由數(shù)列前9項的乘積為1,結合等比數(shù)列的性質得到,從而可求出結果.【詳解】由已知,又,所以,即,所以,,故選B.【點睛】本題主要考查等比數(shù)列的性質以及等比數(shù)列的基本量計算,熟記等比數(shù)列的性質與通項公式即可,屬于常考題型.5、C【解析】

由題意,由于與都是周期函數(shù),且最小正周期都是,故只須在一個周期上考慮函數(shù)的值域即可,分別畫出與的圖象,如圖所示,觀察圖象可得:的值域為,故選C.6、B【解析】

通過得到,再利用和差公式得到答案.【詳解】向量,.且故答案為B【點睛】本題考查了向量平行,正切值的計算,意在考查學生的計算能力.7、D【解析】

A項中,需要看分母的正負;B項和C項中,已知兩個數(shù)平方的大小只能比較出兩個數(shù)絕對值的大小.【詳解】A項中,若,則有,故A項錯誤;B項中,若,則,故B項錯誤;C項中,若則即,故C項錯誤;D項中,若,則一定有,故D項正確.故選:D【點睛】本題主要考查不等關系與不等式,屬于基礎題.8、B【解析】

根據(jù)的奇偶分類討論.【詳解】為偶數(shù)時,,為奇數(shù)時,設,則.∴的值構成的集合是.故選:B.【點睛】本題考查誘導公式,掌握誘導公式是解題基礎.注意誘導公式的十字口訣:奇變偶不變,符號看象限.9、C【解析】

利用誘導公式把化簡成.【詳解】【點睛】本題考查誘導公式的應用,即把任意角的三角函數(shù)轉化成銳角三角函數(shù),考查基本運算求解能力.10、B【解析】當,不平行時,不存在直線與,都垂直,,,故正確;存在兩條平行直線,,,,,,則,相交或平行,所以不正確;存在兩條異面直線,,,,,,由面面平行的判定定理得,故正確;存在一個平面,使得,,則,相交或平行,所以不正確;故選二、填空題:本大題共6小題,每小題5分,共30分。11、.【解析】

由題意,畫出幾何圖形.由三線合一可求得,根據(jù)補角關系可求得.再結合余弦定理即可求得.【詳解】在中,,作,如下圖所示:由三線合一可知為中點則所以點為延長線上一點,則在中由余弦定理可得所以故答案為:【點睛】本題考查了等腰三角形性質,余弦定理在解三角形中的應用,屬于基礎題.12、【解析】

本題利用幾何概型求解.先根據(jù)到點的距離等于1的點構成圖象特征,求出其體積,最后利用體積比即可得點到點,的距離不大于1的概率;【詳解】解:由題意可知,點P到點或的距離都不大于1的點組成的集合分別以、為球心,1為半徑的兩個半球,其體積為,又該圓柱的體積為,則所求概率為.故答案為:【點睛】本題主要考查幾何概型、圓柱和球的體積等基礎知識,考查運算求解能力,考查空間想象力、化歸與轉化思想.關鍵是明確滿足題意的測度為體積比.13、;【解析】f(x)=sinx-2cosx==sin(x-φ),其中sinφ=,cosφ=,當x-φ=2kπ+(k∈Z)時,函數(shù)f(x)取得最大值,即θ=2kπ++φ時,函數(shù)f(x)取到最大值,所以cosθ=-sinφ=-.14、【解析】

先求出到原點的距離,再利用正弦函數(shù)定義求解.【詳解】因為,所以到原點距離,故.故答案為:.【點睛】設始邊為的非負半軸,終邊經(jīng)過任意一點,則:15、或【解析】

求出圓的圓心與半徑分別為:,,分別設出直線斜率存在與不存在情況下的直線方程,利用點到直線的距離等于半徑即可得到答案.【詳解】由圓的一般方程得到圓的圓心和半徑分別為;,;(1)當過點的切線斜率不存在時,切線方程為:,此時圓心到直線的距離,故不與圓相切,不滿足題意;(2)當過點的切線的斜率存在時,設切線方程為:,即為;由于直線與圓相切,所以圓心到切線的距離等于半徑,即,解得:或,所以切線的方程為或;綜述所述:切線的方程或【點睛】本題考查過圓外一點求圓的切線方程,解題關鍵是設出切線方程,利用圓心到切線的距離等于半徑得到關系式,屬于中檔題.16、【解析】

觀察式子特點可知,分子上兩余弦的角的和是,分母上兩個正弦的角的和是,據(jù)此規(guī)律即可寫出式子【詳解】觀察式子規(guī)律可總結出一般規(guī)律:,可賦值,得故答案為:【點睛】本題考查歸納推理能力,能找出余角關系和補角關系是解題的關鍵,屬于基礎題三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1);(2)460元.【解析】

(1)根據(jù)表中的數(shù)據(jù),求得最高氣溫位于區(qū)間和最高氣溫低于20的天數(shù),利用古典概型的概率計算公式,即可求得相應的概率;(2)分別求出溫度不低于、溫度在,以及溫度低于時的利潤及相應的概率,即可求解這一天銷售這種酸奶的平均利潤,得到答案.【詳解】(1)根據(jù)往年銷售經(jīng)驗,每天需求量與當天最高氣溫(單位:)有關.如果最高氣溫不低于25,需求量為500瓶,如果最高氣溫位于區(qū)間,需求量為300瓶,如果最高氣溫低于20,需求量為200瓶,得到最高氣溫位于區(qū)間和最高氣溫低于20的天數(shù)為,所以六月份這種酸奶一天的需求量不超過300瓶的頻率.(2)當溫度大于等于時,需求量為500瓶,利潤為:元,當溫度在時,需求量為300瓶,利潤為:元,當溫度低于時,需求量為200瓶,利潤為:元,平均利潤為【點睛】本題主要考查了古典概型及其概率的計算,以及概率的實際應用,其中解答中認真審題,熟練應用古典概型及其概率的計算公式,以及平均利潤的計算方法是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.18、8【解析】

利用同角三角函數(shù)的基本關系式求得,利用三角形的面積公式列方程求得,結合求得,根據(jù)余弦定理求得的長.【詳解】由()得.因為的面積是,則,所以由解得.由余弦定理得,即的長是.【點睛】本小題主要考查同角三角函數(shù)的基本關系式,考查三角形的面積公式,考查余弦定理解三角形.19、(1)(2)【解析】

⑴用頻率分布直方圖中的每一組數(shù)據(jù)的平均數(shù)乘以對應的概率并求和即可得出結果;⑵首先可通過分層抽樣確定6人中在分數(shù)段以及分數(shù)段中的人數(shù),然后分別寫出所有的基本事件以及滿足題意中“兩名同學數(shù)學成績均在中”的基本事件,最后兩者相除,即可得出結果.【詳解】⑴由頻率分布表,估計這50名同學的數(shù)學平均成績?yōu)椋海虎朴深l率分布直方圖可知分數(shù)低于115分的同學有人,則用分層抽樣抽取6人中,分數(shù)在有1人,用a表示,分數(shù)在中的有5人,用、、、、表示,則基本事件有、、、、、、、、、、、、、、,共15個,滿足條件的基本事件為、、、、、、、、、,共10個,所以這兩名同學分數(shù)均在中的概率為.【點睛】本題考查了頻率分布直方圖以及古典概型的相關性質,解決本題的關鍵是對頻率分布直方圖的理解以及對古典概型概率的計算公式的使用,考查推理能力,是簡單題.20、(1);(2)【解析】

(1)由,可得:,再用正弦定理可得:,從而求得的值;(2)根據(jù)題意由韋達定理和余弦定理列出關于的方

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論