




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年黑龍江省大慶市肇源市級名校中考聯(lián)考數(shù)學試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(共10小題,每小題3分,共30分)1.下列計算正確的是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a2?a3=a6D.﹣3a2+2a2=﹣a22.計算(x-2)(x+5)的結果是A.x2+3x+7 B.x2+3x+10 C.x2+3x-10 D.x2-3x-103.如圖1,在△ABC中,D、E分別是AB、AC的中點,將△ADE沿線段DE向下折疊,得到圖1.下列關于圖1的四個結論中,不一定成立的是()A.點A落在BC邊的中點 B.∠B+∠1+∠C=180°C.△DBA是等腰三角形 D.DE∥BC4.如圖是由一些相同的小正方體組成的幾何體的三視圖,則組成這個幾何體的小正方體個數(shù)最多為()A.7 B.8 C.9 D.105.在△ABC中,AD和BE是高,∠ABE=45°,點F是AB的中點,AD與FE,BE分別交于點G、H.∠CBE=∠BAD,有下列結論:①FD=FE;②AH=2CD;③BC?AD=AE2;④S△BEC=S△ADF.其中正確的有()A.1個 B.2個 C.3個 D.4個6.計算(-1)×2的結果是()A.-2 B.-1 C.1 D.27.把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=41°,∠D=30°,斜邊AB=4,CD=1.把三角板DCE繞著點C順時針旋轉11°得到△D1CE1(如圖2),此時AB與CD1交于點O,則線段AD1的長度為()A. B. C. D.48.方程5x+2y=-9與下列方程構成的方程組的解為的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-89.一元二次方程x2+2x﹣15=0的兩個根為()A.x1=﹣3,x2=﹣5B.x1=3,x2=5C.x1=3,x2=﹣5D.x1=﹣3,x2=510.如圖,AB為⊙O的直徑,C、D為⊙O上的點,若AC=CD=DB,則cos∠CAD=()A. B. C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.一個圓錐的高為3,側面展開圖是半圓,則圓錐的側面積是_________12.若一元二次方程有兩個不相等的實數(shù)根,則k的取值范圍是.13.如圖,點M、N分別在∠AOB的邊OA、OB上,將∠AOB沿直線MN翻折,設點O落在點P處,如果當OM=4,ON=3時,點O、P的距離為4,那么折痕MN的長為______.14.如圖,矩形中,,,將矩形沿折疊,點落在點處.則重疊部分的面積為______.15.不等式組的解集為____.16.一個斜面的坡度i=1:0.75,如果一個物體從斜面的底部沿著斜面方向前進了20米,那么這個物體在水平方向上前進了_____米.三、解答題(共8題,共72分)17.(8分)如圖,AB是⊙O的直徑,點C是弧AB的中點,點D是⊙O外一點,AD=AB,AD交⊙O于F,BD交⊙O于E,連接CE交AB于G.(1)證明:∠C=∠D;(2)若∠BEF=140°,求∠C的度數(shù);(3)若EF=2,tanB=3,求CE?CG的值.18.(8分)某景區(qū)在同一線路上順次有三個景點A,B,C,甲、乙兩名游客從景點A出發(fā),甲步行到景點C;乙花20分鐘時間排隊后乘觀光車先到景點B,在B處停留一段時間后,再步行到景點C.甲、乙兩人離景點A的路程s(米)關于時間t(分鐘)的函數(shù)圖象如圖所示.甲的速度是______米/分鐘;當20≤t≤30時,求乙離景點A的路程s與t的函數(shù)表達式;乙出發(fā)后多長時間與甲在途中相遇?若當甲到達景點C時,乙與景點C的路程為360米,則乙從景點B步行到景點C的速度是多少?19.(8分)如圖,在Rt中,,分別以點A、C為圓心,大于長為半徑畫弧,兩弧相交于點M、N,連結MN,與AC、BC分別交于點D、E,連結AE.(1)求;(直接寫出結果)(2)當AB=3,AC=5時,求的周長.20.(8分)許昌文峰塔又稱文明寺塔,為全國重點文物保護單位,某校初三數(shù)學興趣小組的同學想要利用學過的知識測量文峰塔的高度,他們找來了測角儀和卷尺,在點A處測得塔頂C的仰角為30°,向塔的方向移動60米后到達點B,再次測得塔頂C的仰角為60°,試通過計算求出文峰塔的高度CD.(結果保留兩位小數(shù))21.(8分)某中學為了解學生平均每天“誦讀經典”的時間,在全校范圍內隨機抽查了部分學生進行調查統(tǒng)計(設每天的誦讀時間為分鐘),將調查統(tǒng)計的結果分為四個等級:Ⅰ級、Ⅱ級、Ⅲ級、Ⅳ級.將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中提供的信息,解答下列問題:()請補全上面的條形圖.()所抽查學生“誦讀經典”時間的中位數(shù)落在__________級.()如果該校共有名學生,請你估計該校平均每天“誦讀經典”的時間不低于分鐘的學生約有多少人?22.(10分)如圖,已知點、在直線上,且,于點,且,以為直徑在的左側作半圓,于,且.若半圓上有一點,則的最大值為________;向右沿直線平移得到;①如圖,若截半圓的的長為,求的度數(shù);②當半圓與的邊相切時,求平移距離.23.(12分)閱讀材料:小胖同學發(fā)現(xiàn)這樣一個規(guī)律:兩個頂角相等的等腰三角形,如果具有公共的頂角的頂點,并把它們的底角頂點連接起來則形成一組旋轉全等的三角形.小胖把具有這個規(guī)律的圖形稱為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.(1)在圖1中證明小胖的發(fā)現(xiàn);借助小胖同學總結規(guī)律,構造“手拉手”圖形來解答下面的問題:(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點E為△ABC外一點,點D為BC中點,∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).24.如圖,AB是半圓O的直徑,點P是半圓上不與點A,B重合的動點,PC∥AB,點M是OP中點.(1)求證:四邊形OBCP是平行四邊形;(2)填空:①當∠BOP=時,四邊形AOCP是菱形;②連接BP,當∠ABP=時,PC是⊙O的切線.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
根據(jù)各個選項中的式子可以計算出正確的結果,從而可以解答本題.【詳解】-aa-b2a2-3a故選:D.【點睛】考查整式的除法,完全平方公式,同底數(shù)冪相乘以及合并同類項,比較基礎,難度不大.2、C【解析】
根據(jù)多項式乘以多項式的法則進行計算即可.【詳解】x-2x+5故選:C.【點睛】考查多項式乘以多項式,掌握多項式乘以多項式的運算法則是解題的關鍵.3、A【解析】
根據(jù)折疊的性質明確對應關系,易得∠A=∠1,DE是△ABC的中位線,所以易得B、D答案正確,D是AB中點,所以DB=DA,故C正確.【詳解】根據(jù)題意可知DE是三角形ABC的中位線,所以DE∥BC;∠B+∠1+∠C=180°;∵BD=AD,∴△DBA是等腰三角形.故只有A錯,BA≠CA.故選A.【點睛】主要考查了三角形的內角和外角之間的關系以及等腰三角形的性質.還涉及到翻折變換以及中位線定理的運用.(1)三角形的外角等于與它不相鄰的兩個內角和.(1)三角形的內角和是180度.求角的度數(shù)常常要用到“三角形的內角和是180°這一隱含的條件.通過折疊變換考查正多邊形的有關知識,及學生的邏輯思維能力.解答此類題最好動手操作.4、C【解析】
主視圖、左視圖、俯視圖是分別從物體正面、左面和上面看,所得到的圖形.【詳解】根據(jù)三視圖知,該幾何體中小正方體的分布情況如下圖所示:所以組成這個幾何體的小正方體個數(shù)最多為9個,故選C.【點睛】考查了三視圖判定幾何體,關鍵是對三視圖靈活運用,體現(xiàn)了對空間想象能力的考查.5、C【解析】
根據(jù)題意和圖形,可以判斷各小題中的結論是否成立,從而可以解答本題.【詳解】∵在△ABC中,AD和BE是高,∴∠ADB=∠AEB=∠CEB=90°,∵點F是AB的中點,∴FD=AB,F(xiàn)E=AB,∴FD=FE,①正確;∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,∴∠ABC=∠C,∴AB=AC,∵AD⊥BC,∴BC=2CD,∠BAD=∠CAD=∠CBE,在△AEH和△BEC中,,∴△AEH≌△BEC(ASA),∴AH=BC=2CD,②正確;∵∠BAD=∠CBE,∠ADB=∠CEB,∴△ABD∽△BCE,∴,即BC?AD=AB?BE,∵∠AEB=90°,AE=BE,∴AB=BEBC?AD=BE?BE,∴BC?AD=AE2;③正確;設AE=a,則AB=a,∴CE=a﹣a,∴=,即,∵AF=AB,∴,∴S△BEC≠S△ADF,故④錯誤,故選:C.【點睛】本題考查相似三角形的判定與性質、全等三角形的判定與性質、直角三角形斜邊上的中線,解答本題的關鍵是明確題意,找出所求問題需要的條件,利用數(shù)形結合的思想解答.6、A【解析】
根據(jù)兩數(shù)相乘,同號得正,異號得負,再把絕對值相乘計算即可.【詳解】-1×2=-故選A.【點睛】本題考查了有理數(shù)的乘法計算,解答本題的關鍵是熟練掌握有理數(shù)的乘法法則.7、A【解析】試題分析:由題意易知:∠CAB=41°,∠ACD=30°.若旋轉角度為11°,則∠ACO=30°+11°=41°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt△ABC中,AB=4,則AO=OC=2.在Rt△AOD1中,OD1=CD1-OC=3,由勾股定理得:AD1=.故選A.考點:1.旋轉;2.勾股定理.8、D【解析】試題分析:將x與y的值代入各項檢驗即可得到結果.解:方程5x+2y=﹣9與下列方程構成的方程組的解為的是3x﹣4y=﹣1.故選D.點評:此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數(shù)的值.9、C【解析】
運用配方法解方程即可.【詳解】解:x2+2x﹣15=x2+2x+1-16=(x+1)2-16=0,即(x+1)2=16,解得,x1=3,x2=-5.故選擇C.【點睛】本題考查了解一元二次方程,選擇合適的解方程方法是解題關鍵.10、D【解析】
根據(jù)圓心角,弧,弦的關系定理可以得出===,根據(jù)圓心角和圓周角的關鍵即可求出的度數(shù),進而求出它的余弦值.【詳解】解:===,故選D.【點睛】本題考查圓心角,弧,弦,圓周角的關系,熟記特殊角的三角函數(shù)值是解題的關鍵.二、填空題(本大題共6個小題,每小題3分,共18分)11、18π【解析】解:設圓錐的半徑為,母線長為.則解得12、:k<1.【解析】
∵一元二次方程有兩個不相等的實數(shù)根,∴△==4﹣4k>0,解得:k<1,則k的取值范圍是:k<1.故答案為k<1.13、【解析】
由折疊的性質可得MN⊥OP,EO=EP=2,由勾股定理可求ME,NE的長,即可求MN的長.【詳解】設MN與OP交于點E,
∵點O、P的距離為4,
∴OP=4
∵折疊
∴MN⊥OP,EO=EP=2,
在Rt△OME中,ME=在Rt△ONE中,NE=∴MN=ME-NE=2-故答案為2-【點睛】本題考查了翻折變換,勾股定理,利用勾股定理求線段的長度是本題的關鍵.14、10【解析】
根據(jù)翻折的特點得到,.設,則.在中,,即,解出x,再根據(jù)三角形的面積進行求解.【詳解】∵翻折,∴,,又∵,∴,∴.設,則.在中,,即,解得,∴,∴.【點睛】此題主要考查勾股定理,解題的關鍵是熟知翻折的性質及勾股定理的應用.15、x>1【解析】
分別解出兩不等式的解集再求其公共解.【詳解】由①得:x>1
由②得:x>∴不等式組的解集是x>1.【點睛】求不等式的解集須遵循以下原則:同大取較大,同小取較小.小大大小中間找,大大小小解不了.16、1.【解析】
直接根據(jù)題意得出直角邊的比值,即可表示出各邊長進而得出答案.【詳解】如圖所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴設AC=4x,則BC=3x,∴AB==5x,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故這個物體在水平方向上前進了1m.故答案為:1.【點睛】此題主要考查坡度的運用,需注意的是坡度是坡角的正切值,是鉛直高度h和水平寬l的比,我們把斜坡面與水平面的夾角叫做坡角,若用α表示坡角,可知坡度與坡角的關系是.三、解答題(共8題,共72分)17、(1)見解析;(2)70°;(3)1.【解析】
(1)先根據(jù)等邊對等角得出∠B=∠D,即可得出結論;(2)先判斷出∠DFE=∠B,進而得出∠D=∠DFE,即可求出∠D=70°,即可得出結論;(3)先求出BE=EF=2,進而求AE=6,即可得出AB,進而求出AC,再判斷出△ACG∽△ECA,即可得出結論.【詳解】(1)∵AB=AD,∴∠B=∠D,∵∠B=∠C,∴∠C=∠D;(2)∵四邊形ABEF是圓內接四邊形,∴∠DFE=∠B,由(1)知,∠B=∠D,∴∠D=∠DFE,∵∠BEF=140°=∠D+∠DFE=2∠D,∴∠D=70°,由(1)知,∠C=∠D,∴∠C=70°;(3)如圖,由(2)知,∠D=∠DFE,∴EF=DE,連接AE,OC,∵AB是⊙O的直徑,∴∠AEB=90°,∴BE=DE,∴BE=EF=2,在Rt△ABE中,tanB==3,∴AE=3BE=6,根據(jù)勾股定理得,AB=,∴OA=OC=AB=,∵點C是的中點,∴,∴∠AOC=90°,∴AC=OA=2,∵,∴∠CAG=∠CEA,∵∠ACG=∠ECA,∴△ACG∽△ECA,∴,∴CE?CG=AC2=1.【點睛】本題是幾何綜合題,涉及了圓的性質,圓周角定理,勾股定理,銳角三角函數(shù),相似三角形的判定和性質,圓內接四邊形的性質,等腰三角形的性質等,綜合性較強,有一定的難度,熟練掌握和靈活運用相關知識是解題的關鍵.本題中求出BE=2也是解題的關鍵.18、(1)60;(2)s=10t-6000;(3)乙出發(fā)5分鐘和1分鐘時與甲在途中相遇;(4)乙從景點B步行到景點C的速度是2米/分鐘.【解析】
(1)觀察圖像得出路程和時間,即可解決問題.(2)利用待定系數(shù)法求一次函數(shù)解析式即可;(3)分兩種情況討論即可;(4)設乙從B步行到C的速度是x米/分鐘,根據(jù)當甲到達景點C時,乙與景點C的路程為360米,所用的時間為(90-60)分鐘,列方程求解即可.【詳解】(1)甲的速度為60米/分鐘.(2)當20≤t≤1時,設s=mt+n,由題意得:,解得:,所以s=10t-6000;(3)①當20≤t≤1時,60t=10t-6000,解得:t=25,25-20=5;②當1≤t≤60時,60t=100,解得:t=50,50-20=1.綜上所述:乙出發(fā)5分鐘和1分鐘時與甲在途中相遇.(4)設乙從B步行到C的速度是x米/分鐘,由題意得:5400-100-(90-60)x=360解得:x=2.答:乙從景點B步行到景點C的速度是2米/分鐘.【點睛】本題考查了待定系數(shù)法求一次函數(shù)解析式、行程問題等知識,解題的關鍵是理解題意,讀懂圖像信息,學會構建一次函數(shù)解決實際問題,屬于中考常考題型.19、(1)∠ADE=90°;(2)△ABE的周長=1.【解析】試題分析:(1)是線段垂直平分線的做法,可得∠ADE=90°(2)根據(jù)勾股定理可求得BC=4,由垂直平分線的性質可知AE=CE,所以△ABE的周長為AB+BE+AE=AB+BC=1試題解析:(1)∵由題意可知MN是線段AC的垂直平分線,∴∠ADE=90°;(2)∵在Rt△ABC中,∠B=90°,AB=3,AC=5,∴BC==4,∵MN是線段AC的垂直平分線,∴AE=CE,∴△ABE的周長=AB+(AE+BE)=AB+BC=3+4=1.考點:1、尺規(guī)作圖;2、線段垂直平分線的性質;3、勾股定理;4、三角形的周長20、51.96米.【解析】
先根據(jù)三角形外角的性質得出∠ACB=30°,進而得出AB=BC=1,在Rt△BDC中,,即可求出CD的長.【詳解】解:∵∠CBD=1°,∠CAB=30°,∴∠ACB=30°.∴AB=BC=1.在Rt△BDC中,∴(米).答:文峰塔的高度CD約為51.96米.【點睛】本題考查解直角三角形的應用,解題的關鍵是明確題意,利用銳角三角函數(shù)進行解答.21、)補全的條形圖見解析()Ⅱ級.().【解析】試題分析:(1)根據(jù)Ⅱ級的人數(shù)和所占的百分比即可求出總數(shù),從而求出三級人數(shù),進而補全圖形;(2)把所有同類數(shù)據(jù)按照從小到大的順序排列,中間的數(shù)據(jù)是中位數(shù),則該數(shù)在Ⅱ級.;(3)由樣本估計總體,由于時間不低于的人數(shù)占,故該類學生約有408人.試題解析:(1)本次隨機抽查的人數(shù)為:20÷40%=50(人).三級人數(shù)為:50-13-20-7=10.補圖如下:(2)把所有同類數(shù)據(jù)按照從小到大的順序排列,中間的數(shù)據(jù)是中位數(shù),則該數(shù)在Ⅱ級.(3)由樣本估計總體,由于時間不低于的人數(shù)占,所以該類學生約有.22、(1);(2)①;②【解析】
(1)由圖可知當點F與點D重合時,AF最大,根據(jù)勾股定理即可求出此時AF的長;(2)①連接EG、EH.根據(jù)的長為π可求得∠GEH=60°,可得△GEH是等邊三角形,根據(jù)等邊三角形的三個角都等于60°得出∠HGE=60°,可得EG//A'O,求得∠GEO=90°,得出△GEO是等腰直角三角形,求得∠EGO=45°,根據(jù)平角的定義即可求出∠A'GO的度數(shù);②分C'A'與半圓相切和B'A'與半圓相切兩種情況進行討論,利用切線的性質、勾股定理、切斜長定理等知識進行解答即可得出答案.【詳解】解:(1)當點F與點D重合時,AF最大,AF最大=AD==,故答案為:;(2)①連接、.∵,∴.∵,∴是等邊三角形,∴.∵,∴,∴,∵,∴,∵,∴,∴.②當切半圓于時,連接,則.∵,∴切半圓于點,∴.∵,∴,∴平移距離為.當切半圓于時,連接并延長于點,∵,,,∴,∵,∴,∵,∴,∵,∴.∵,∴.【點睛】本題主要考查了弧長公式、勾股定理、切線的性質,作出過切點的半徑構造出直角三角形是解決此題的關鍵.23、(1)證明見解析;(2)證明見解析;(3)∠EAF=m°.【解析】分析:(1)如圖1中,欲證明BD=EC,只要證明△DAB≌△EAC即可;(2)如圖2中,延長DC到E,使得DB=DE.首先證明△BDE是等邊三角形,再證明△ABD≌△CBE即可解決問題;(3)如圖3中,將AE繞點E逆時針旋轉m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.想辦法證明△AFE≌△AFG,可得∠EAF=∠FAG=m°.詳(1)證明:如圖1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC,∴BD=EC.(2)證明:如圖2中,延長DC到E,使得DB=DE.∵DB=DE,∠BDC=60°,∴△BDE是等邊三角形,∴∠BD=BE,∠DBE=∠ABC=60°,∴∠ABD=∠CBE,∵AB=BC,∴△ABD≌△CBE,∴AD=EC,∴BD=DE=DC+CE=DC+AD.∴AD+CD=BD.(3)如圖3中,將AE繞點E逆時針旋轉m°得到AG,連接CG、EG、EF、FG,延長ED到M,使得DM=DE,連接FM、CM.由(1)可知△EA
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 【正版授權】 IEC 60269-2-1:2004 EN-D Low-voltage fuses - Part 2-1: Supplementary requirements for fuses for use by authorized persons (fuses mainly for industrial application) - Sections
- 【正版授權】 IEC 60947-8:2003+AMD1:2006 CSV EN-D Low-voltage switchgear and controlgear - Part 8: Control units for built-in thermal protection (PTC) for rotating electrical machines
- 2025年平安教育培訓方案表
- 八一建軍節(jié)活動方案流程12025年
- 2025年中國旅游日主題活動方案
- 大學商務禮儀課程教學
- 2025年學校數(shù)學工作方案演講稿
- 籃球課程思政教學設計
- (盛高培訓之四)薪酬體系設計技術(資料1)
- 上海思博職業(yè)技術學院《體育與健康-健美操》2023-2024學年第一學期期末試卷
- 2025年職業(yè)指導師專業(yè)能力測試卷:職業(yè)指導服務與心理咨詢
- 學校安全管理制度匯編
- 2024年山東電力中心醫(yī)院高層次衛(wèi)技人才招聘筆試歷年參考題庫頻考點附帶答案
- 浙江省四校聯(lián)考2023至2024學年高一下學期3月月考化學試題附參考答案(解析)
- 左心衰竭合并肺水腫的護理查房
- 重力壩畢業(yè)設計-水電站混凝土重力壩工程設計
- 《淹溺急救》PPT課件(2022版)
- EPC項目管理之安全文明施工責任制度
- 第二節(jié)模糊綜合評價法
- 《雷鋒叔叔_你在哪里》說課稿55481
- CFM567反推裝置介紹
評論
0/150
提交評論