版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
福建省泉州市達(dá)標(biāo)名校2025屆高一下數(shù)學(xué)期末復(fù)習(xí)檢測試題注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.不論為何值,直線恒過定點A. B. C. D.2.若各項為正數(shù)的等差數(shù)列的前n項和為,且,則()A.9 B.14 C.7 D.183.若直線過兩點,,則的斜率為()A. B. C.2 D.4.對具有線性相關(guān)關(guān)系的變量,有觀測數(shù)據(jù),已知它們之間的線性回歸方程是,若,則()A. B. C. D.5.函數(shù)圖象的一個對稱中心和一條對稱軸可以是()A., B.,C., D.,6.已知向量=(),=(-1,1),若,則的值為()A. B. C. D.7.已知l,m是兩條不同的直線,m⊥平面α,則“”是“l(fā)⊥m”的()A.充分而不必要條件 B.必要而不充分條件C.充要條件 D.既不充分也不必要條件8.函數(shù)的一個對稱中心是()A. B. C. D.9.設(shè)變量滿足約束條件,則目標(biāo)函數(shù)的最小值為()A. B. C. D.210.函數(shù)的圖象大致為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)在的遞減區(qū)間是__________12.已知數(shù)列的首項,,.若對任意,都有恒成立,則的取值范圍是_____13.在單位圓中,面積為1的扇形所對的圓心角的弧度數(shù)為_.14.已知數(shù)列的通項公式,則____________.15.直棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點,BC=CA=CC1,則BM與AN所成的角的余弦值為.16.已知且,則________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.某校高一年級有學(xué)生480名,對他們進(jìn)行政治面貌和性別的調(diào)查,其結(jié)果如下:性別團(tuán)員群眾男80女180(1)若隨機(jī)抽取一人,是團(tuán)員的概率為,求,;(2)在團(tuán)員學(xué)生中,按性別用分層抽樣的方法,抽取一個樣本容量為5的樣本,然后在這5名團(tuán)員中任選2人,求兩人中至多有1個女生的概率.18.在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進(jìn)面包,然后以5元/個的價格出售.如果當(dāng)天賣不完,剩下的面包以1元/個的價格全部賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了80個面包,以x(單位:個,)表示面包的需求量,T(單位:元)表示利潤.(1)求食堂面包需求量的平均數(shù);(2)求T關(guān)于x的函數(shù)解析式;(3)根據(jù)直方圖估計利潤T不少于100元的概率.19.在中,角所對的邊分別為,且.(1)求;(2)若,求的周長.20.在三棱柱中,平面ABC,,,D,E分別為AB,中點.(Ⅰ)求證:平面;(Ⅱ)求證:四邊形為平行四邊形;(Ⅲ)求證:平面平面.21.已知數(shù)列為等差數(shù)列,為前項和,,(1)求的通項公式;(2)設(shè),比較與的大?。唬?)設(shè)函數(shù),,求,和數(shù)列的前項和.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解析】
根據(jù)直線方程分離參數(shù),再由直線過定點的條件可得方程組,解方程組進(jìn)而可得m的值.【詳解】恒過定點,恒過定點,由解得即直線恒過定點.【點睛】本題考查含有參數(shù)的直線過定點問題,過定點是解題關(guān)鍵.2、B【解析】
根據(jù)等差中項定義及條件式,先求得.再由等差數(shù)列的求和公式,即可求得的值.【詳解】數(shù)列為各項是正數(shù)的等差數(shù)列則由等差中項可知所以原式可化為,所以由等差數(shù)列求和公式可得故選:B【點睛】本題考查了等差中項的性質(zhì),等差數(shù)列前n項和的性質(zhì)及應(yīng)用,屬于基礎(chǔ)題.3、C【解析】
直接運用斜率計算公式求解.【詳解】因為直線過兩點,,所以直線的斜率,故本題選C.【點睛】本題考查了斜率的計算公式,考查了數(shù)學(xué)運算能力、識記公式的能力.4、A【解析】
先求出,再由線性回歸直線通過樣本中心點即可求出.【詳解】由題意,,因為線性回歸直線通過樣本中心點,將代入可得,所以.故選:A.【點睛】本題主要考查線性回歸直線通過樣本中心點這一知識點的應(yīng)用,屬常規(guī)考題.5、B【解析】
直接利用余弦型函數(shù)的性質(zhì)求出函數(shù)的對稱軸和對稱中心,即可得到答案.【詳解】由題意,函數(shù)的性質(zhì),令,解得,當(dāng)時,,即函數(shù)的一條對稱軸的方程為,令,解得,當(dāng)時,,即函數(shù)的一個對稱中心為,故選B.【點睛】本題主要考查了余弦型函數(shù)的性質(zhì)對稱軸和對稱中心的應(yīng)用,著重考查學(xué)生的運算能力和轉(zhuǎn)換能力,屬于基礎(chǔ)題型.6、D【解析】
對條件兩邊平方,得到該兩個向量分別垂直,代入點的坐標(biāo),計算參數(shù),即可.【詳解】結(jié)合條件可知,,得到,代入坐標(biāo),得到,解得,故選D.【點睛】本道題考查了向量的運算,考查了向量垂直坐標(biāo)表示,難度中等.7、A【解析】
根據(jù)充分條件和必要條件的定義,結(jié)合線面垂直的性質(zhì)進(jìn)行判斷即可.【詳解】當(dāng)m⊥平面α?xí)r,若l∥α”則“l(fā)⊥m”成立,即充分性成立,若l⊥m,則l∥α或l?α,即必要性不成立,則“l(fā)∥α”是“l(fā)⊥m”充分不必要條件,故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結(jié)合線面垂直的性質(zhì)和定義是解決本題的關(guān)鍵.難度不大,屬于基礎(chǔ)題8、A【解析】
令,得:,即函數(shù)的對稱中心為,再求解即可.【詳解】解:令,解得:,即函數(shù)的對稱中心為,令,即函數(shù)的一個對稱中心是,故選:A.【點睛】本題考查了正切函數(shù)的對稱中心,屬基礎(chǔ)題.9、B【解析】
根據(jù)不等式組畫出可行域,數(shù)形結(jié)合解決問題.【詳解】不等式組確定的可行域如下圖所示:因為可化簡為與直線平行,且其在軸的截距與成正比關(guān)系,故當(dāng)且僅當(dāng)目標(biāo)函數(shù)經(jīng)過和的交點時,取得最小值,將點的坐標(biāo)代入目標(biāo)函數(shù)可得.故選:B.【點睛】本題考查常規(guī)線性規(guī)劃問題,屬基礎(chǔ)題,注意數(shù)形結(jié)合即可.10、C【解析】
利用函數(shù)的性質(zhì)逐個排除即可求解.【詳解】函數(shù)的定義域為,故排除A、B.令又,即函數(shù)為奇函數(shù),所以函數(shù)的圖像關(guān)于原點對稱,排除D故選:C【點睛】本題考查了函數(shù)圖像的識別,同時考查了函數(shù)的性質(zhì),屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】
利用兩角和的正弦公式化函數(shù)為一個角的一個三角函數(shù)形式,然后由正弦函數(shù)的性質(zhì)得出結(jié)論.【詳解】,由得,,時,.即所求減區(qū)間為.故答案為.【點睛】本題考查三角函數(shù)的單調(diào)性,解題時需把函數(shù)化為一個角一個三角函數(shù)形式,然后結(jié)合正弦函數(shù)的單調(diào)性求解.12、【解析】
代入求得,利用遞推關(guān)系式可得,從而可證得和均為等差數(shù)列,利用等差數(shù)列通項公式可求得通項;根據(jù)恒成立不等式可得到不等式組:,解不等式組求得結(jié)果.【詳解】當(dāng)時,,解得:由得:是以為首項,為公差的等差數(shù)列;是以為首項,為公差的等差數(shù)列,恒成立,解得:即的取值范圍為:本題正確結(jié)果:【點睛】本題考查根據(jù)數(shù)列的單調(diào)性求解參數(shù)范圍的問題,關(guān)鍵是能夠根據(jù)遞推關(guān)系式得到奇數(shù)項和偶數(shù)項分別成等差數(shù)列,從而分別求得通項公式,進(jìn)而根據(jù)所需的單調(diào)性得到不等關(guān)系.13、2【解析】試題分析:由題意可得:.考點:扇形的面積公式.14、【解析】
將代入即可求解【詳解】令,可得.故答案為:【點睛】本題考查求數(shù)列的項,是基礎(chǔ)題15、【解析】試題分析:畫出圖形,找出BM與AN所成角的平面角,利用解三角形求出BM與AN所成角的余弦值.解:直三棱柱ABC﹣A1B1C1中,∠BCA=90°,M,N分別是A1B1,A1C1的中點,如圖:BC的中點為O,連結(jié)ON,MN,OB,∴MNOB,∴MN0B是平行四邊形,∴BM與AN所成角就是∠ANO,∵BC=CA=CC1,設(shè)BC=CA=CC1=2,∴CO=1,AO=,AN=,MB==,在△ANO中,由余弦定理得:cos∠ANO===.故答案為.考點:異面直線及其所成的角.16、【解析】
根據(jù)數(shù)列極限的方法求解即可.【詳解】由題,故.又.故.故.故答案為:【點睛】本題主要考查了數(shù)列極限的問題,屬于基礎(chǔ)題型.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1),;(2).【解析】
(1)隨機(jī)抽取一人,是團(tuán)員的概率為,得,再由總?cè)藬?shù)為480得的另一個關(guān)系式,聯(lián)立求解,即可得出結(jié)論;(2)根據(jù)團(tuán)員男女生人數(shù)的比例,可求出抽取一個樣本容量為5的樣本,男生為2人,女生為3人,將5人編號,列出從5人中抽取2人的所有基本事件,求出至多有1個女生的基本事件的個數(shù),按古典概型求概率,即可求解.【詳解】解:(1)由題意得:,解得,.(2)在團(tuán)員學(xué)生中,按性別用分層抽樣的方法,抽取一個樣本容量為5的樣本,抽中男生:人,抽中女生:人,2名男生記為,3名女生記為,在這5名團(tuán)員中任選2人,基本事件有:共有10個基本事件,兩人中至多有1個女生包含的基本事件個數(shù)有7個,∴兩人中至多有1個女生的概率.【點睛】本題考查分層抽樣抽取元素個數(shù)的分配,考查古典概型的概率,屬于基礎(chǔ)題.18、(1)84;(2);(3)【解析】
(1)每個小矩形的面積乘以該組中間值,所得數(shù)據(jù)求和就是平均數(shù);(2)根據(jù)需求量分段表示函數(shù)關(guān)系;(3)根據(jù)(1)利潤T不少于100元時,即,即,求出其頻率,即可估計概率.【詳解】(1)估計食堂面包需求量的平均數(shù)為:(2)解:由題意,當(dāng)時,利潤,當(dāng)時,利潤,即T關(guān)于x的函數(shù)解析式(3)解:由題意,設(shè)利潤T不少于100元為事件A,由(1)知,利潤T不少于100元時,即,即,由直方圖可知,當(dāng)時,所求概率為【點睛】此題考查頻率分布直方圖,根據(jù)頻率分布直方圖求平均數(shù),計算頻率,以及建立函數(shù)模型解決實際問題,綜合性比較強(qiáng).19、(1);(2)【解析】
分析:(1)利用正弦定理,求得,即可求出A,根據(jù)已知條件算出,再由大邊對大角,即可求出C;(2)易得,根據(jù)兩角和正弦公式求出,再由正弦定理求出和,即可得到答案.詳解:解:(1)由正弦定理得,又,所以,從而,因為,所以.又因為,,所以.(2)由(1)得由正弦定理得,可得,.所以的周長為.點睛:本題主要考查正弦定理在解三角形中的應(yīng)用.正弦定理是解三角形的有力工具,其常見用法有以下四種:(1)已知兩邊和一邊的對角,求另一邊的對角(一定要注意討論鈍角與銳角);(2)已知兩角與一個角的對邊,求另一個角的對邊;(3)證明化簡過程中邊角互化;(4)求三角形外接圓半徑.20、(Ⅰ)見解析(Ⅱ)見解析(Ⅲ)見解析【解析】
(Ⅰ)只需證明,,即可得平面;(Ⅱ)可得四邊形為平行四邊形,,,即可得四邊形為平行四邊形;(Ⅲ)易得平面,即可得平面平面.【詳解】(Ⅰ)∵平面,∴,又,,而,∴平面.(Ⅱ)∵、分別為、的中點,∴,,即四邊形為平行四邊形,∴,,∴四邊形為平行四邊形.(Ⅲ)∵,為中點,∴,又∵,且,∴平面,而平面,∴平面平面.【點睛】本題考查了空間點、線、面位置關(guān)系,屬于基礎(chǔ)題.21、(1);(2);(3),,【解析】
(1)利用基本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度醫(yī)療用品供應(yīng)協(xié)議范例
- 2024新住宅買賣協(xié)議封面樣本
- 搪瓷制品的花紋與紋理設(shè)計考核試卷
- 體育場排球場網(wǎng)布質(zhì)量檢測方法考核試卷
- 《結(jié)構(gòu)化環(huán)境無人駕駛物流運輸車運動規(guī)劃研究》
- 2024年瓶蓋銷售協(xié)議范本
- 《具有形狀記憶功能杜仲膠復(fù)合材料的制備與性能研究》
- 2024年事業(yè)單位職工勞動協(xié)議范本
- 《旅游業(yè)動態(tài)跟蹤及趨勢洞察月報(2024年8月)》范文
- 《基于UTAUT2模型的虛擬學(xué)術(shù)社區(qū)用戶持續(xù)使用意愿影響因素研究》
- 重癥超聲在ICU的應(yīng)用-課件
- NB∕T 10739-2021 井工煤礦輔助運輸安全管理規(guī)范
- 2022年中國鹽業(yè)集團(tuán)有限公司校園招聘筆試試題及答案解析
- 球墨鑄鐵管道施工的學(xué)習(xí)課件
- 2022年小學(xué)六年級畢業(yè)監(jiān)測科學(xué)素養(yǎng)測試題試卷 (含答題卡)
- 部編二年級語文查字典練習(xí)題
- 新人教版七年級英語上冊期中復(fù)習(xí)課件
- 鉭鈮冶金課件
- 10KV供配電工程施工組織設(shè)計方案
- DBJ50∕T-044-2019 園林種植土壤質(zhì)量標(biāo)準(zhǔn)數(shù)據(jù)
- 應(yīng)屆生學(xué)歷學(xué)位證明模板
評論
0/150
提交評論