版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
浙江省杭州求是高級中學(xué)2025屆高一數(shù)學(xué)第二學(xué)期期末復(fù)習(xí)檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知a,b,c∈R,那么下列命題中正確的是()A.若a>b,則ac2>bc2B.若,則a>bC.若a3>b3且ab<0,則D.若a2>b2且ab>0,則2.已知直線平面,直線平面,下列四個命題中正確的是().()()()()A.()與() B.()與() C.()與() D.()與()3.已知數(shù)列的前項和為,若,則()A. B. C. D.4.化簡結(jié)果為()A. B. C. D.5.要得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度6.()A.0 B.1 C.-1 D.27.已知函數(shù),則()A. B. C. D.8.函數(shù)圖象的一條對稱軸在內(nèi),則滿足此條件的一個值為()A. B. C. D.9.在中,分別為角的對邊,若,且,則邊=()A. B. C. D.10.已知數(shù)列滿足,且是函數(shù)的兩個零點,則等于()A.24 B.32 C.48 D.64二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè)y=f(x)是定義域為R的偶函數(shù),且它的圖象關(guān)于點(2,0)對稱,若當x∈(0,2)時,f(x)=x2,則f(19)=_____12.若三角形ABC的三個角A,B,C成等差數(shù)列,a,b,c分別為角A,B,C的對邊,三角形ABC的面積,則b的最小值是________.13.我國古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一段記載:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān).”其大意為:“有一個人走378里路,第一天健步行走,從第二天起腳痛每天走的路程為前一天的一半,走了6天才到達目的地.”則該人第一天走的路程為__________里.14.已知向量,,若,則__________.15.一個扇形的圓心角是2弧度,半徑是4,則此扇形的面積是______.16.圓上的點到直線4x+3y-12=0的距離的最小值是三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.的內(nèi)角的對邊分別為,.(1)求;(2)若,的面積為,求.18.正項數(shù)列的前項和滿足.(I)求的值;(II)證明:當,且時,;(III)若對于任意的正整數(shù),都有成立,求實數(shù)的最大值.19.已知函數(shù)(1)求函數(shù)的反函數(shù);(2)解方程:.20.已知.(1)求實數(shù)的值;(2)若,求實數(shù)的值.21.在銳角中角,,的對邊分別是,,,且.(1)求角的大小;(2)若,求面積的最大值.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解析】
根據(jù)不等式的性質(zhì),對A、B、C、D四個選項通過舉反例進行一一驗證.【詳解】A.若a>b,則ac2>bc2(錯),若c=0,則A不成立;B.若,則a>b(錯),若c<0,則B不成立;C.若a3>b3且ab<0,則(對),若a3>b3且ab<0,則D.若a2>b2且ab>0,則(錯),若,則D不成立.故選:C.【點睛】此題主要考查不等關(guān)系與不等式的性質(zhì)及其應(yīng)用,例如舉反例法求解比較簡單.兩個式子比較大小的常用方法有:做差和0比,作商和1比,或者直接利用不等式的性質(zhì)得到大小關(guān)系,有時可以代入一些特殊的數(shù)據(jù)得到具體值,進而得到大小關(guān)系.2、D【解析】
∵直線l⊥平面α,若α∥β,則直線l⊥平面β,又∵直線m?平面β,∴l(xiāng)⊥m,即(1)正確;∵直線l⊥平面α,若α⊥β,則l與m可能平行、異面也可能相交,故(2)錯誤;∵直線l⊥平面α,若l∥m,則m⊥平面α,∵直線m?平面β,∴α⊥β;故(3)正確;∵直線l⊥平面α,若l⊥m,則m∥α或m?α,則α與β平行或相交,故(4)錯誤;故選D.3、A【解析】
再遞推一步,兩個等式相減,得到一個等式,進行合理變形,可以得到一個等比數(shù)列,求出通項公式,最后求出數(shù)列的通項公式,最后求出,選出答案即可.【詳解】因為,所以當時,,兩式相減化簡得:,而,所以數(shù)列是以為首項,為公比的等比數(shù)列,因此有,所以,故本題選A.【點睛】本題考查了已知數(shù)列遞推公式求數(shù)列通項公式的問題,考查了等比數(shù)列的判斷以及通項公式,正確的遞推和等式的合理變形是解題的關(guān)鍵.4、A【解析】
根據(jù)指數(shù)冪運算法則進行化簡即可.【詳解】本題正確選項:【點睛】本題考查指數(shù)冪的運算,屬于基礎(chǔ)題.5、C【解析】
由,則只需將函數(shù)的圖象向左平移個單位長度.【詳解】解:因為,所以要得到函數(shù)的圖象,只需將函數(shù)的圖象向左平移個單位長度.故選:C.【點睛】本題考查了三角函數(shù)圖像的平移變換,屬基礎(chǔ)題.6、A【解析】
直接利用三角函數(shù)的誘導(dǎo)公式化簡求值.【詳解】sin210°=sin(180°+30°)+cos60°=﹣sin30°+cos60°.故選A.【點睛】本題考查利用誘導(dǎo)公式化簡求值,是基礎(chǔ)的計算題.7、A【解析】
由題意結(jié)合函數(shù)的解析式分別求得的值,然后求解兩者之差即可.【詳解】由題意可得:,,則.故選:A.【點睛】求分段函數(shù)的函數(shù)值,要先確定要求值的自變量屬于哪一段區(qū)間,然后代入該段的解析式求值,當出現(xiàn)f(f(a))的形式時,應(yīng)從內(nèi)到外依次求值.8、A【解析】
求出函數(shù)的對稱軸方程,使得滿足在內(nèi),解不等式即可求出滿足此條件的一個φ值.【詳解】解:函數(shù)圖象的對稱軸方程為:xk∈Z,函數(shù)圖象的一條對稱軸在內(nèi),所以當k=0時,φ故選A.【點睛】本題是基礎(chǔ)題,考查三角函數(shù)的基本性質(zhì),不等式的解法,考查計算能力,能夠充分利用基本函數(shù)的性質(zhì)解題是學(xué)好數(shù)學(xué)的前提.9、B【解析】
由利用正弦定理化簡,再利用余弦定理表示出cosA,整理化簡得a2b2+c2,與,聯(lián)立即可求出b的值.【詳解】由sinB=8cosAsinC,利用正弦定理化簡得:b=8c?cosA,將cosA代入得:b=8c?,整理得:a2b2+c2,即a2﹣c2b2,∵a2﹣c2=3b,∴b2=3b,解得:b=1或b=0(舍去),則b=1.故選B【點睛】此題考查了正弦、余弦定理,熟練掌握定理,準確計算是解本題的關(guān)鍵,是中檔題10、D【解析】試題分析:依題意可知,,,,所以.即,故,,,.,所以,又可知.,故.考點:函數(shù)的零點、數(shù)列的遞推公式二、填空題:本大題共6小題,每小題5分,共30分。11、﹣1.【解析】
根據(jù)題意,由函數(shù)的奇偶性與對稱性分析可得,即函數(shù)是周期為的周期函數(shù),據(jù)此可得,再由函數(shù)的解析式計算即可.【詳解】根據(jù)題意,是定義域為的偶函數(shù),則,又由得圖象關(guān)于點對稱,則,所以,即函數(shù)是周期為的周期函數(shù),所以,又當時,,則,所以.故答案為:.【點睛】本題考查函數(shù)的奇偶性與周期性的性質(zhì)以及應(yīng)用,注意分析函數(shù)的周期性,屬于基礎(chǔ)題.12、【解析】
先求出,再根據(jù)面積得到,再利用余弦定理和基本不等式得解.【詳解】由題得,所以.由余弦定理得,當且僅當時取等.所以b的最小值是.故答案為:【點睛】本題主要考查余弦定理解三角形,考查基本不等式求最值,意在考查學(xué)生對這些知識的理解掌握水平.13、192【解析】設(shè)每天走的路程里數(shù)為由題意知是公比為的等比數(shù)列∵∴∴故答案為14、1【解析】由,得.即.解得.15、16【解析】
利用公式直接計算即可.【詳解】扇形的面積.故答案為:.【點睛】本題考查扇形的面積,注意扇形的面積公式有兩個:,其中為扇形的半徑,為圓心角的弧度數(shù),為扇形的弧長,可根據(jù)題設(shè)條件合理選擇一個,本題屬于基礎(chǔ)題.16、【解析】
計算出圓心到直線的距離,減去半徑,求得圓上的點到直線的最小距離.【詳解】圓的圓心為,半徑.圓心到直線的距離為,故最小距離為.【點睛】本小題主要考查圓上的點到直線距離最小值的求法,考查點到直線距離公式,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)8.【解析】
(1)首先利用正弦定理邊化角,再利用余弦定理可得結(jié)果;(2)利用面積公式和余弦定理可得結(jié)果.【詳解】(1)因為,所以,則,因為,所以.(2)因為的面積為,所以,即,因為,所以,所以.【點睛】本題主要考查解三角形的綜合應(yīng)用,意在考查學(xué)生的基礎(chǔ)知識,轉(zhuǎn)化能力及計算能力,難度不大.18、(I);(II)見解析;(III)的最大值為1【解析】
(I)直接令中的n=1即得的值;(II)由題得時,,化簡即得證;(III)用累加法可得:,再利用項和公式求得,再求的范圍得解.【詳解】(I)(II)因為,所以時,,化簡得:;(III)因為,用累加法可得:,由,得,當時,上式也成立,因為,則,所以是單調(diào)遞減數(shù)列,所以,又因為,所以,即,的最大值為1.【點睛】本題主要考查項和公式求數(shù)列的通項,考查數(shù)列的恒成立問題,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.19、(1);(2)【解析】
(1)反解,然后交換的位置,寫出原函數(shù)的值域即可得到結(jié)果;(2)代入原函數(shù)與反函數(shù)的解析式,解方程即可得到答案.【詳解】(1)由得,得,因為,所以,所以.(2)由得2,所以,即,解得,所以,所以原方程的解集為.【點睛】本題考查了求反函數(shù)的解析式,考查了指數(shù)式與對數(shù)式的互化,屬于中檔題.20、(1);(2).【解析】試題分析:(1)利用向量,建立關(guān)于的方程,即可求解的值;(2)寫出向量的坐標,利用得出關(guān)于的方程,即可求解實數(shù)的值
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024至2030年中國手推式移動電站數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國彩色涂層鋼卷行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國庭木戶行業(yè)投資前景及策略咨詢研究報告
- 盆景學(xué)知識如何做好一盆盆景
- 2024至2030年中國卸瓶臺數(shù)據(jù)監(jiān)測研究報告
- 2024至2030年中國冶金控制系統(tǒng)行業(yè)投資前景及策略咨詢研究報告
- 2024至2030年中國交流耐電壓測試儀數(shù)據(jù)監(jiān)測研究報告
- 2024年山東省(棗莊、菏澤、臨沂、聊城)中考語文試題含解析
- 2024年中國顆粒白土市場調(diào)查研究報告
- 2024年中國膠印水性光油市場調(diào)查研究報告
- 重大決策合法性審查表.doc
- 球罐聚氨酯噴涂保冷施工方案
- 物業(yè)項目經(jīng)理考試題(精華版)
- 信號集中監(jiān)測系統(tǒng)(完整版)
- 北師大版二年級上冊數(shù)學(xué)全冊教學(xué)反思
- 游泳犯規(guī)及判罰修改
- 大型施工機械設(shè)備安全管理辦法
- 波紋管道施工方案(完整版)
- 支氣管鏡圖譜(精選PPT干貨)
- 美工考核評分表績效考核表
- CFX地流場精確數(shù)值模擬教程
評論
0/150
提交評論