版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.2.不等式的解集記為,有下面四個命題:;;;.其中的真命題是()A. B. C. D.3.已知函數的最大值為,若存在實數,使得對任意實數總有成立,則的最小值為()A. B. C. D.4.已知我市某居民小區(qū)戶主人數和戶主對戶型結構的滿意率分別如圖和如圖所示,為了解該小區(qū)戶主對戶型結構的滿意程度,用分層抽樣的方法抽取的戶主進行調查,則樣本容量和抽取的戶主對四居室滿意的人數分別為A.240,18 B.200,20C.240,20 D.200,185.設,隨機變量的分布列是01則當在內增大時,()A.減小,減小 B.減小,增大C.增大,減小 D.增大,增大6.某設備使用年限x(年)與所支出的維修費用y(萬元)的統(tǒng)計數據分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年7.在直角梯形中,,,,,點為上一點,且,當的值最大時,()A. B.2 C. D.8.已知拋物線y2=4x的焦點為F,拋物線上任意一點P,且PQ⊥y軸交y軸于點Q,則的最小值為()A. B. C.l D.19.已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,,則當時,的最大值是()A.8 B.9 C.10 D.1110.已知F是雙曲線(k為常數)的一個焦點,則點F到雙曲線C的一條漸近線的距離為()A.2k B.4k C.4 D.211.波羅尼斯(古希臘數學家,的公元前262-190年)的著作《圓錐曲線論》是古代世界光輝的科學成果,它將圓錐曲線的性質網羅殆盡,幾乎使后人沒有插足的余地.他證明過這樣一個命題:平面內與兩定點距離的比為常數k(k>0,且k≠1)的點的軌跡是圓,后人將這個圓稱為阿波羅尼斯圓.現有橢圓=1(a>b>0),A,B為橢圓的長軸端點,C,D為橢圓的短軸端點,動點M滿足=2,△MAB面積的最大值為8,△MCD面積的最小值為1,則橢圓的離心率為()A. B. C. D.12.已知全集,集合,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知全集,集合則_____.14.已知數列滿足,且恒成立,則的值為____________.15.執(zhí)行如圖所示的程序框圖,則輸出的結果是______.16.小李參加有關“學習強國”的答題活動,要從4道題中隨機抽取2道作答,小李會其中的三道題,則抽到的2道題小李都會的概率為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛(wèi)生防疫工作的相關要求,決定在全公司范圍內舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.(1)設方案②中,某組個人的每個人的血化驗次數為,求的分布列;(2)設,試比較方案②中,分別取2,3,4時,各需化驗的平均總次數;并指出在這三種分組情況下,相比方案①,化驗次數最多可以平均減少多少次?(最后結果四舍五入保留整數)18.(12分)如圖,在四邊形中,,,.(1)求的長;(2)若的面積為6,求的值.19.(12分)以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的參數方程是(為參數,常數),曲線的極坐標方程是.(1)寫出的普通方程及的直角坐標方程,并指出是什么曲線;(2)若直線與曲線,均相切且相切于同一點,求直線的極坐標方程.20.(12分)在中,角的對邊分別為.已知,.(1)若,求;(2)求的面積的最大值.21.(12分)在中,角的對邊分別為,且,.(1)求的值;(2)若求的面積.22.(10分)設函數.(1)若,時,在上單調遞減,求的取值范圍;(2)若,,,求證:當時,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
設為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結論.【詳解】設分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關系問題,關鍵是能夠通過垂直關系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.2、A【解析】
作出不等式組表示的可行域,然后對四個選項一一分析可得結果.【詳解】作出可行域如圖所示,當時,,即的取值范圍為,所以為真命題;為真命題;為假命題.故選:A【點睛】此題考查命題的真假判斷與應用,著重考查作圖能力,熟練作圖,正確分析是關鍵,屬于中檔題.3、B【解析】
根據三角函數的兩角和差公式得到,進而可以得到函數的最值,區(qū)間(m,n)長度要大于等于半個周期,最終得到結果.【詳解】函數則函數的最大值為2,存在實數,使得對任意實數總有成立,則區(qū)間(m,n)長度要大于等于半個周期,即故答案為:B.【點睛】這個題目考查了三角函數的兩角和差的正余弦公式的應用,以及三角函數的圖像的性質的應用,題目比較綜合.4、A【解析】
利用統(tǒng)計圖結合分層抽樣性質能求出樣本容量,利用條形圖能求出抽取的戶主對四居室滿意的人數.【詳解】樣本容量為:(150+250+400)×30%=240,∴抽取的戶主對四居室滿意的人數為:故選A.【點睛】本題考查樣本容量和抽取的戶主對四居室滿意的人數的求法,是基礎題,解題時要認真審題,注意統(tǒng)計圖的性質的合理運用.5、C【解析】
,,判斷其在內的單調性即可.【詳解】解:根據題意在內遞增,,是以為對稱軸,開口向下的拋物線,所以在上單調遞減,故選:C.【點睛】本題考查了利用隨機變量的分布列求隨機變量的期望與方差,屬于中檔題.6、D【解析】
根據樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.7、B【解析】
由題,可求出,所以,根據共線定理,設,利用向量三角形法則求出,結合題給,得出,進而得出,最后利用二次函數求出的最大值,即可求出.【詳解】由題意,直角梯形中,,,,,可求得,所以·∵點在線段上,設,則,即,又因為所以,所以,當時,等號成立.所以.故選:B.【點睛】本題考查平面向量線性運算中的加法運算、向量共線定理,以及運用二次函數求最值,考查轉化思想和解題能力.8、A【解析】
設點,則點,,利用向量數量積的坐標運算可得,利用二次函數的性質可得最值.【詳解】解:設點,則點,,,,當時,取最小值,最小值為.故選:A.【點睛】本題考查拋物線背景下的向量的坐標運算,考查學生的計算能力,是基礎題.9、B【解析】
根據題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數列,∴.∵是以1為首項,2為公比的等比數列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【點睛】本題考查了等差數列,等比數列,f分組求和,意在考查學生對于數列公式方法的靈活運用.10、D【解析】
分析可得,再去絕對值化簡成標準形式,進而根據雙曲線的性質求解即可.【詳解】當時,等式不是雙曲線的方程;當時,,可化為,可得虛半軸長,所以點F到雙曲線C的一條漸近線的距離為2.故選:D【點睛】本題考查雙曲線的方程與點到直線的距離.屬于基礎題.11、D【解析】
求得定點M的軌跡方程可得,解得a,b即可.【詳解】設A(-a,0),B(a,0),M(x,y).∵動點M滿足=2,則=2,化簡得.∵△MAB面積的最大值為8,△MCD面積的最小值為1,∴,解得,∴橢圓的離心率為.故選D.【點睛】本題考查了橢圓離心率,動點軌跡,屬于中檔題.12、D【解析】
根據函數定義域的求解方法可分別求得集合,由補集和交集定義可求得結果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數定義域的求解,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
根據補集的定義求解即可.【詳解】解:.故答案為.【點睛】本題主要考查了補集的運算,屬于基礎題.14、【解析】
易得,所以是等差數列,再利用等差數列的通項公式計算即可.【詳解】由已知,,因,所以,所以數列是以為首項,3為公差的等差數列,故,所以.故答案為:【點睛】本題考查由遞推數列求數列中的某項,考查學生等價轉化的能力,是一道容易題.15、1【解析】
該程序的功能為利用循環(huán)結構計算并輸出變量的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.【詳解】模擬程序的運行,可得:,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,不滿足條件,執(zhí)行循環(huán)體,,,此時滿足條件,退出循環(huán),輸出的值為1.故答案為:1.【點睛】本題考查程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,屬于基礎題.16、【解析】
從四道題中隨機抽取兩道共6種情況,抽到的兩道全都會的情況有3種,即可得到概率.【詳解】由題:從從4道題中隨機抽取2道作答,共有種,小李會其中的三道題,則抽到的2道題小李都會的情況共有種,所以其概率為.故答案為:【點睛】此題考查根據古典概型求概率,關鍵在于根據題意準確求出基本事件的總數和某一事件包含的基本事件個數.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)分布列見解析;(2)406.【解析】
(1)計算個人的血混合后呈陰性反應的概率為,呈陽性反應的概率為,得到分布列.(2)計算,代入數據計算比較大小得到答案.【詳解】(1)設每個人的血呈陰性反應的概率為,則.所以個人的血混合后呈陰性反應的概率為,呈陽性反應的概率為.依題意可知,,所以的分布列為:(2)方案②中.結合(1)知每個人的平均化驗次數為:時,,此時1000人需要化驗的總次數為690次,時,,此時1000人需要化驗的總次數為604次,時,,此時1000人需要化驗的次數總為594次,即時化驗次數最多,時次數居中,時化驗次數最少,而采用方案①則需化驗1000次,故在這三種分組情況下,相比方案①,當時化驗次數最多可以平均減少次.【點睛】本題考查了分布列,數學期望,意在考查學生的計算能力和應用能力.18、(1)(2)【解析】
(1)利用余弦定理可得的長;(2)利用面積得出,結合正弦定理可得.【詳解】解:(1)由題可知.在中,,所以.(2),則.又,所以.【點睛】本題主要考查利用正弦定理和余弦定理解三角形,已知角較多時一般選用正弦定理,已知邊較多時一般選用余弦定理.19、(1),,表示以為圓心為半徑的圓;為拋物線;(2)【解析】
(1)消去參數的直角坐標方程,利用,即得的直角坐標方程;(2)由直線與拋物線相切,求導可得切線斜率,再由直線與圓相切,故切線與圓心與切點連線垂直,可求解得到切點坐標,即得解.【詳解】(1)消去參數的直角坐標方程為:.的極坐標方程.∵,.當時表示以為圓心為半徑的圓;為拋物線.(2)設切點為,由于,則切線斜率為,由于直線與圓相切,故切線與圓心與切點連線垂直,故有,直線的直角坐標方程為,所以的極坐標方程為.【點睛】本題考查了極坐標,參數方程綜合,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.20、(1);(2)4【解析】
(1)根據已知用二倍角余弦求出,進而求出,利用正弦定理,即可求解;(2)由邊角,利用余弦定理結合基本不等式,求出的最大值,即可求出結論.【詳解】(1)∵,∴,由正弦定理得.(2)由(1)知,,所以,,,當且僅當時,的面積有最大值4.【點睛】本題考查正弦定理、余弦定理、三角恒等變換解三角形,應用基本不等式求最值,屬于基礎題.21、(1)3(2)78【解析】試題分析:(1)由兩角和差公式得到,由三角形中的數值關系得到,進而求得數值;(2)由三角形的三個角的關系得到,再由正弦定理得到b=15,故面積公式為.解析:(1)在中,由,得為銳角,所以,所以,所以.(2)在三角形中,由,所以,由,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 課題申報參考:民族志與文學社會學研究
- 2025年度農場果品種植基地生態(tài)修復與保護合同4篇
- 二零二五年度電視劇劇本創(chuàng)作編劇助理及劇本跟組合同3篇
- 二零二五年度城市公交客運線路特許經營合同樣本3篇
- 二零二五年度場綜合執(zhí)法行政處罰裁量基準操作合同4篇
- 二零二五版摩托車行業(yè)信用體系建設合同范本4篇
- 二零二五年度2025年度藝人個人工作室運營管理合同2篇
- 2025年度城市綠化工程鋼管腳手架安裝與拆除合同
- 2025年整棟酒店式公寓出租承包合同4篇
- 二零二五年度沖擊鉆施工設備進出口代理合同3篇
- 第1課 隋朝統(tǒng)一與滅亡 課件(26張)2024-2025學年部編版七年級歷史下冊
- 2025-2030年中國糖醇市場運行狀況及投資前景趨勢分析報告
- 冬日暖陽健康守護
- 水處理藥劑采購項目技術方案(技術方案)
- 2024級高一上期期中測試數學試題含答案
- 盾構標準化施工手冊
- 天然氣脫硫完整版本
- 山東省2024-2025學年高三上學期新高考聯合質量測評10月聯考英語試題
- 不間斷電源UPS知識培訓
- 三年級除法豎式300道題及答案
- 人教版八級物理下冊知識點結
評論
0/150
提交評論