版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
四川省巴中學(xué)市恩陽區(qū)重點(diǎn)名校2024屆中考數(shù)學(xué)考試模擬沖刺卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,數(shù)軸上有M、N、P、Q四個點(diǎn),其中點(diǎn)P所表示的數(shù)為a,則數(shù)-3a所對應(yīng)的點(diǎn)可能是()A.M B.N C.P D.Q2.如圖,△ABC中,D為BC的中點(diǎn),以D為圓心,BD長為半徑畫一弧交AC于E點(diǎn),若∠A=60°,∠B=100°,BC=4,則扇形BDE的面積為何?()A. B. C. D.3.下列選項(xiàng)中,能使關(guān)于x的一元二次方程ax2﹣4x+c=0一定有實(shí)數(shù)根的是()A.a(chǎn)>0 B.a(chǎn)=0 C.c>0 D.c=04.已知等邊三角形的內(nèi)切圓半徑,外接圓半徑和高的比是()A.1:2: B.2:3:4 C.1::2 D.1:2:35.如圖,正方形ABCD中,E,F(xiàn)分別在邊AD,CD上,AF,BE相交于點(diǎn)G,若AE=3ED,DF=CF,則的值是A. B. C. D.6.如圖,在Rt△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足為D、E,F(xiàn)分別是CD,AD上的點(diǎn),且CE=AF.如果∠AED=62°,那么∠DBF的度數(shù)為()A.62° B.38° C.28° D.26°7.三角形的兩邊長分別為3和6,第三邊的長是方程x2﹣6x+8=0的一個根,則這個三角形的周長是()A.9 B.11 C.13 D.11或138.實(shí)數(shù)﹣5.22的絕對值是()A.5.22 B.﹣5.22 C.±5.22 D.9.如圖,經(jīng)過測量,C地在A地北偏東46°方向上,同時C地在B地北偏西63°方向上,則∠C的度數(shù)為()A.99° B.109° C.119° D.129°10.益陽市高新區(qū)某廠今年新招聘一批員工,他們中不同文化程度的人數(shù)見下表:文化程度高中大專本科碩士博士人數(shù)9172095關(guān)于這組文化程度的人數(shù)數(shù)據(jù),以下說法正確的是:()A.眾數(shù)是20 B.中位數(shù)是17 C.平均數(shù)是12 D.方差是2611.下列條件中不能判定三角形全等的是()A.兩角和其中一角的對邊對應(yīng)相等 B.三條邊對應(yīng)相等C.兩邊和它們的夾角對應(yīng)相等 D.三個角對應(yīng)相等12.如圖,直角坐標(biāo)平面內(nèi)有一點(diǎn),那么與軸正半軸的夾角的余切值為()A.2 B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.點(diǎn)A(1,2),B(n,2)都在拋物線y=x2﹣4x+m上,則n=_____.14.在一張直角三角形紙片的兩直角邊上各取一點(diǎn),分別沿斜邊中點(diǎn)與這兩點(diǎn)的連線剪去兩個三角形,剩下的部分是如圖所示的四邊形,AB∥CD,CD⊥BC于C,且AB、BC、CD邊長分別為2,4,3,則原直角三角形紙片的斜邊長是_______.15.如圖,在矩形ABCD中,AB=5,BC=3,將矩形ABCD繞點(diǎn)B按順時針方向旋轉(zhuǎn)得到矩形GBEF,點(diǎn)A落在矩形ABCD的邊CD上,連接CE,則CE的長是________.16.如圖,線段AB的長為4,C為AB上一個動點(diǎn),分別以AC、BC為斜邊在AB的同側(cè)作兩個等腰直角三角形ACD和BCE,連結(jié)DE,則DE長的最小值是_____.17.如圖,正比例函數(shù)y=kx與反比例函數(shù)y=的圖象有一個交點(diǎn)A(2,m),AB⊥x軸于點(diǎn)B,平移直線y=kx使其經(jīng)過點(diǎn)B,得到直線l,則直線l對應(yīng)的函數(shù)表達(dá)式是_________.18.已知且,則=__________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)先化簡,再求值:÷,其中m是方程x2+2x-3=0的根.20.(6分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,點(diǎn)P為邊AB上一動點(diǎn),以P為圓心,BP為半徑的圓交邊BC于點(diǎn)Q.(1)求AB的長;(2)當(dāng)BQ的長為時,請通過計(jì)算說明圓P與直線DC的位置關(guān)系.21.(6分)某校在一次大課間活動中,采用了四種活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學(xué)生都選擇了一種形式參與活動,小杰對同學(xué)們選用的活動形式進(jìn)行了隨機(jī)抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計(jì)結(jié)果,繪制了不完整的統(tǒng)計(jì)圖.請結(jié)合統(tǒng)計(jì)圖,回答下列問題:(1)本次調(diào)查學(xué)生共人,a=,并將條形圖補(bǔ)充完整;(2)如果該校有學(xué)生2000人,請你估計(jì)該校選擇“跑步”這種活動的學(xué)生約有多少人?(3)學(xué)校讓每班在A、B、C、D四種活動形式中,隨機(jī)抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是“跑步”和“跳繩”的概率.22.(8分)23.(8分)我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做“等高底”三角形,這條邊叫做這個三角形的“等底”.(1)概念理解:如圖1,在△ABC中,AC=6,BC=3,∠ACB=30°,試判斷△ABC是否是”等高底”三角形,請說明理由.(1)問題探究:如圖1,△ABC是“等高底”三角形,BC是”等底”,作△ABC關(guān)于BC所在直線的對稱圖形得到△A'BC,連結(jié)AA′交直線BC于點(diǎn)D.若點(diǎn)B是△AA′C的重心,求的值.(3)應(yīng)用拓展:如圖3,已知l1∥l1,l1與l1之間的距離為1.“等高底”△ABC的“等底”BC在直線l1上,點(diǎn)A在直線l1上,有一邊的長是BC的倍.將△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,A′C所在直線交l1于點(diǎn)D.求CD的值.24.(10分)已知,如圖1,直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,拋物線經(jīng)過A、B、C三點(diǎn).點(diǎn)D是直線AC上方拋物線上任意一點(diǎn).(1)求拋物線的函數(shù)關(guān)系式;(2)若P為線段AC上一點(diǎn),且S△PCD=2S△PAD,求點(diǎn)P的坐標(biāo);(3)如圖2,連接OD,過點(diǎn)A、C分別作AM⊥OD,CN⊥OD,垂足分別為M、N.當(dāng)AM+CN的值最大時,求點(diǎn)D的坐標(biāo).25.(10分)圖1所示的遮陽傘,傘柄垂直于水平地面,其示意圖如圖2、當(dāng)傘收緊時,點(diǎn)P與點(diǎn)A重合;當(dāng)傘慢慢撐開時,動點(diǎn)P由A向B移動;當(dāng)點(diǎn)P到達(dá)點(diǎn)B時,傘張得最開、已知傘在撐開的過程中,總有PM=PN=CM=CN=6.0分米,CE=CF=18.0分米,BC=2.0分米、設(shè)AP=x分米.(1)求x的取值范圍;(2)若∠CPN=60°,求x的值;(3)設(shè)陽光直射下,傘下的陰影(假定為圓面)面積為y,求y關(guān)于x的關(guān)系式(結(jié)果保留π).26.(12分)在平面直角坐標(biāo)系xOy中,點(diǎn)M的坐標(biāo)為,點(diǎn)N的坐標(biāo)為,且,,我們規(guī)定:如果存在點(diǎn)P,使是以線段MN為直角邊的等腰直角三角形,那么稱點(diǎn)P為點(diǎn)M、N的“和諧點(diǎn)”.(1)已知點(diǎn)A的坐標(biāo)為,①若點(diǎn)B的坐標(biāo)為,在直線AB的上方,存在點(diǎn)A,B的“和諧點(diǎn)”C,直接寫出點(diǎn)C的坐標(biāo);②點(diǎn)C在直線x=5上,且點(diǎn)C為點(diǎn)A,B的“和諧點(diǎn)”,求直線AC的表達(dá)式.(2)⊙O的半徑為r,點(diǎn)為點(diǎn)、的“和諧點(diǎn)”,且DE=2,若使得與⊙O有交點(diǎn),畫出示意圖直接寫出半徑r的取值范圍.27.(12分)國家發(fā)改委公布的《商品房銷售明碼標(biāo)價規(guī)定》,從2011年5月1日起商品房銷售實(shí)行一套一標(biāo)價.商品房銷售價格明碼標(biāo)價后,可以自行降價、打折銷售,但漲價必須重新申報.某市某樓盤準(zhǔn)備以每平方米5000元的均價對外銷售,由于新政策的出臺,購房都持幣觀望.為了加快資金周轉(zhuǎn),房地產(chǎn)開發(fā)商對價格經(jīng)過兩次下調(diào)后,決定以每平方米4050元的均價開盤銷售.求平均每次下調(diào)的百分率;某人準(zhǔn)備以開盤均價購買一套100平方米的房子,開發(fā)商還給予以下兩種優(yōu)惠方案發(fā)供選擇:①打9.8折銷售;②不打折,送兩年物業(yè)管理費(fèi),物業(yè)管理費(fèi)是每平方米每月1.5元,請問哪種方案更優(yōu)惠?
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、A【解析】解:∵點(diǎn)P所表示的數(shù)為a,點(diǎn)P在數(shù)軸的右邊,∴-3a一定在原點(diǎn)的左邊,且到原點(diǎn)的距離是點(diǎn)P到原點(diǎn)距離的3倍,∴數(shù)-3a所對應(yīng)的點(diǎn)可能是M,故選A.點(diǎn)睛:本題考查了數(shù)軸,解決本題的關(guān)鍵是判斷-3a一定在原點(diǎn)的左邊,且到原點(diǎn)的距離是點(diǎn)P到原點(diǎn)距離的3倍.2、C【解析】分析:求出扇形的圓心角以及半徑即可解決問題;詳解:∵∠A=60°,∠B=100°,∴∠C=180°﹣60°﹣100°=20°,∵DE=DC,∴∠C=∠DEC=20°,∴∠BDE=∠C+∠DEC=40°,∴S扇形DBE=.故選C.點(diǎn)睛:本題考查扇形的面積公式、三角形內(nèi)角和定理等知識,解題的關(guān)鍵是記住扇形的面積公式:S=.3、D【解析】試題分析:根據(jù)題意得a≠1且△=,解得且a≠1.觀察四個答案,只有c=1一定滿足條件,故選D.考點(diǎn):根的判別式;一元二次方程的定義.4、D【解析】試題分析:圖中內(nèi)切圓半徑是OD,外接圓的半徑是OC,高是AD,因而AD=OC+OD;在直角△OCD中,∠DOC=60°,則OD:OC=1:2,因而OD:OC:AD=1:2:1,所以內(nèi)切圓半徑,外接圓半徑和高的比是1:2:1.故選D.考點(diǎn):正多邊形和圓.5、C【解析】
如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.設(shè)DE=a,則AE=3a,利用平行線分線段成比例定理解決問題即可.【詳解】如圖作,F(xiàn)N∥AD,交AB于N,交BE于M.∵四邊形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四邊形ANFD是平行四邊形,∵∠D=90°,∴四邊形ANFD是矩形,∵AE=3DE,設(shè)DE=a,則AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=a,∴FM=a,∵AE∥FM,∴,故選C.【點(diǎn)睛】本題考查正方形的性質(zhì)、平行線分線段成比例定理、三角形中位線定理等知識,解題的關(guān)鍵是學(xué)會添加常用輔助線,構(gòu)造平行線解決問題,學(xué)會利用參數(shù)解決問題,屬于中考常考題型.6、C【解析】分析:主要考查:等腰三角形的三線合一,直角三角形的性質(zhì).注意:根據(jù)斜邊和直角邊對應(yīng)相等可以證明△BDF≌△ADE.詳解:∵AB=AC,AD⊥BC,∴BD=CD.又∵∠BAC=90°,∴BD=AD=CD.又∵CE=AF,∴DF=DE,∴Rt△BDF≌Rt△ADE(SAS),∴∠DBF=∠DAE=90°﹣62°=28°.故選C.點(diǎn)睛:熟練運(yùn)用等腰直角三角形三線合一性質(zhì)、直角三角形斜邊上的中線等于斜邊的一半是解答本題的關(guān)鍵.7、C【解析】試題分析:先求出方程x2-6x+8=0的解,再根據(jù)三角形的三邊關(guān)系求解即可.解方程x2-6x+8=0得x=2或x=4當(dāng)x=2時,三邊長為2、3、6,而2+3<6,此時無法構(gòu)成三角形當(dāng)x=4時,三邊長為4、3、6,此時可以構(gòu)成三角形,周長=4+3+6=13故選C.考點(diǎn):解一元二次方程,三角形的三邊關(guān)系點(diǎn)評:解題的關(guān)鍵是熟記三角形的三邊關(guān)系:任兩邊之和大于第三邊,任兩邊之差小于第三邊.8、A【解析】
根據(jù)絕對值的性質(zhì)進(jìn)行解答即可.【詳解】實(shí)數(shù)﹣5.1的絕對值是5.1.故選A.【點(diǎn)睛】本題考查的是實(shí)數(shù)的性質(zhì),熟知絕對值的性質(zhì)是解答此題的關(guān)鍵.9、B【解析】
方向角是從正北或正南方向到目標(biāo)方向所形成的小于90°的角,根據(jù)平行線的性質(zhì)求得∠ACF與∠BCF的度數(shù),∠ACF與∠BCF的和即為∠C的度數(shù).【詳解】解:由題意作圖如下∠DAC=46°,∠CBE=63°,由平行線的性質(zhì)可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故選B.【點(diǎn)睛】本題考查了方位角和平行線的性質(zhì),熟練掌握方位角的概念和平行線的性質(zhì)是解題的關(guān)鍵.10、C【解析】
根據(jù)眾數(shù)、中位數(shù)、平均數(shù)以及方差的概念求解.【詳解】A、這組數(shù)據(jù)中9出現(xiàn)的次數(shù)最多,眾數(shù)為9,故本選項(xiàng)錯誤;B、因?yàn)楣灿?組,所以第3組的人數(shù)為中位數(shù),即9是中位數(shù),故本選項(xiàng)錯誤;C、平均數(shù)==12,故本選項(xiàng)正確;D、方差=[(9-12)2+(17-12)2+(20-12)2+(9-12)2+(5-12)2]=,故本選項(xiàng)錯誤.故選C.【點(diǎn)睛】本題考查了中位數(shù)、平均數(shù)、眾數(shù)的知識,解答本題的關(guān)鍵是掌握各知識點(diǎn)的概念.11、D【解析】
解:A、符合AAS,能判定三角形全等;B、符合SSS,能判定三角形全等;;C、符合SAS,能判定三角形全等;D、滿足AAA,沒有相對應(yīng)的判定方法,不能由此判定三角形全等;故選D.12、B【解析】
作PA⊥x軸于點(diǎn)A,構(gòu)造直角三角形,根據(jù)三角函數(shù)的定義求解.【詳解】過P作x軸的垂線,交x軸于點(diǎn)A,
∵P(2,4),
∴OA=2,AP=4,.
∴∴.故選B.【點(diǎn)睛】本題考查的知識點(diǎn)是銳角三角函數(shù)的定義,解題關(guān)鍵是熟記三角函數(shù)的定義.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1【解析】
根據(jù)題意可以求得m的值和n的值,由A的坐標(biāo),可確定B的坐標(biāo),進(jìn)而可以得到n的值.【詳解】:∵點(diǎn)A(1,2),B(n,2)都在拋物線y=x2-4x+m上,
∴2=1-4+m2=n2-4n+m,
解得【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,解題的關(guān)鍵是明確題意,利用二次函數(shù)的性質(zhì)求解.14、45或1【解析】
先根據(jù)題意畫出圖形,再根據(jù)勾股定理求出斜邊上的中線,最后即可求出斜邊的長.【詳解】①如圖:因?yàn)锳C=22+4點(diǎn)A是斜邊EF的中點(diǎn),所以EF=2AC=45,②如圖:因?yàn)锽D=32點(diǎn)D是斜邊EF的中點(diǎn),所以EF=2BD=1,綜上所述,原直角三角形紙片的斜邊長是45或1,故答案是:45或1.【點(diǎn)睛】此題考查了圖形的剪拼,解題的關(guān)鍵是能夠根據(jù)題意畫出圖形,在解題時要注意分兩種情況畫圖,不要漏解.15、【解析】
解:連接AG,由旋轉(zhuǎn)變換的性質(zhì)可知,∠ABG=∠CBE,BA=BG=5,BC=BE,由勾股定理得,CG==4,∴DG=DC﹣CG=1,則AG==,∵,∠ABG=∠CBE,∴△ABG∽△CBE,∴,解得,CE=,故答案為.【點(diǎn)睛】本題考查的是旋轉(zhuǎn)變換的性質(zhì)、相似三角形的判定和性質(zhì),掌握勾股定理、矩形的性質(zhì)、旋轉(zhuǎn)變換的性質(zhì)是解題的關(guān)鍵.16、2【解析】試題分析:由題意得,DE=CD2+CE2;C為AB上一個動點(diǎn),分別以AC、BC為斜邊在AB的同側(cè)作兩個等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得AC2=AD2+CD2考點(diǎn):不等式的性質(zhì)點(diǎn)評:本題考查不等式的性質(zhì),會用勾股定理,完全平方公式,不等關(guān)系等知識,它們是解決本題的關(guān)鍵17、y=x-3【解析】【分析】由已知先求出點(diǎn)A、點(diǎn)B的坐標(biāo),繼而求出y=kx的解析式,再根據(jù)直線y=kx平移后經(jīng)過點(diǎn)B,可設(shè)平移后的解析式為y=kx+b,將B點(diǎn)坐標(biāo)代入求解即可得.【詳解】當(dāng)x=2時,y==3,∴A(2,3),B(2,0),∵y=kx過點(diǎn)A(2,3),∴3=2k,∴k=,∴y=x,∵直線y=x平移后經(jīng)過點(diǎn)B,∴設(shè)平移后的解析式為y=x+b,則有0=3+b,解得:b=-3,∴平移后的解析式為:y=x-3,故答案為:y=x-3.【點(diǎn)睛】本題考查了一次函數(shù)與反比例函數(shù)的綜合應(yīng)用,涉及到待定系數(shù)法,一次函數(shù)圖象的平移等,求出k的值是解題的關(guān)鍵.18、【解析】分析:根據(jù)相似三角形的面積比等于相似比的平方求解即可.詳解:∵△ABC∽△A′B′C′,∴S△ABC:S△A′B′C′=AB2:A′B′2=1:2,∴AB:A′B′=1:.點(diǎn)睛:本題的關(guān)鍵是理解相似三角形的面積比等于相似比的平方.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、原式=,當(dāng)m=l時,原式=【解析】先通分計(jì)算括號里的,再計(jì)算括號外的,化為最簡,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整體代入化簡后的式子,計(jì)算即可.解:原式=∵x2+2x-3=0,∴x1=-3,x2=1∵‘m是方程x2+2x-3=0的根,∴m=-3或m=1∵m+3≠0,∴.m≠-3,∴m=1當(dāng)m=l時,原式:“點(diǎn)睛”本題考查了分式的化簡求值、一元二次方程的解,解題的關(guān)鍵是通分、約分,以及分子分母的因式分解、整體代入.20、(1)AB長為5;(2)圓P與直線DC相切,理由詳見解析.【解析】
(1)過A作AE⊥BC于E,根據(jù)矩形的性質(zhì)得到CE=AD=1,AE=CD=3,根據(jù)勾股定理即可得到結(jié)論;
(2)過P作PF⊥BQ于F,根據(jù)相似三角形的性質(zhì)得到PB=,得到PA=AB-PB=,過P作PG⊥CD于G交AE于M,根據(jù)相似三角形的性質(zhì)得到PM=,根據(jù)切線的判定定理即可得到結(jié)論.【詳解】(1)過A作AE⊥BC于E,
則四邊形AECD是矩形,
∴CE=AD=1,AE=CD=3,
∵AB=BC,
∴BE=AB-1,
在Rt△ABE中,∵AB2=AE2+BE2,
∴AB2=32+(AB-1)2,
解得:AB=5;
(2)過P作PF⊥BQ于F,
∴BF=BQ=,
∴△PBF∽△ABE,
∴,
∴,
∴PB=,
∴PA=AB-PB=,
過P作PG⊥CD于G交AE于M,
∴GM=AD=1,∵DC⊥BC∴PG∥BC
∴△APM∽△ABE,
∴,
∴,
∴PM=,
∴PG=PM+MG==PB,
∴圓P與直線DC相切.【點(diǎn)睛】本題考查了直線與圓的位置關(guān)系,矩形的判定和性質(zhì),相似三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.21、(1)300,10;(2)有800人;(3).【解析】試題分析:試題解析:(1)120÷40%=300,a%=1﹣40%﹣30%﹣20%=10%,∴a=10,10%×300=30,圖形如下:(2)2000×40%=800(人),答:估計(jì)該校選擇“跑步”這種活動的學(xué)生約有800人;(3)畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中每班所抽到的兩項(xiàng)方式恰好是“跑步”和“跳繩”的結(jié)果數(shù)為2,所以每班所抽到的兩項(xiàng)方式恰好是“跑步”和“跳繩”的概率=.考點(diǎn):1.用樣本估計(jì)總體;2.扇形統(tǒng)計(jì)圖;3.條形統(tǒng)計(jì)圖;4.列表法與樹狀圖法.22、﹣2<x<2.【解析】
分別解不等式,進(jìn)而得出不等式組的解集.【詳解】解①得:x<2解②得:x>﹣2.故不等式組的解集為:﹣2<x<2.【點(diǎn)睛】本題主要考查了解一元一次不等式組,正確掌握不等式組的解法是解題的關(guān)鍵.23、(1)△ABC是“等高底”三角形;(1);(3)CD的值為,1,1.【解析】
(1)過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,根據(jù)30°所對的直角邊等于斜邊的一半可得:根據(jù)“等高底”三角形的概念即可判斷.(1)點(diǎn)B是的重心,得到設(shè)則根據(jù)勾股定理可得即可求出它們的比值.(3)分兩種情況進(jìn)行討論:①當(dāng)時和②當(dāng)時.【詳解】(1)△ABC是“等高底”三角形;理由:如圖1,過A作AD⊥BC于D,則△ADC是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴∴AD=BC=3,即△ABC是“等高底”三角形;(1)如圖1,∵△ABC是“等高底”三角形,BC是“等底”,∴∵△ABC關(guān)于BC所在直線的對稱圖形是,∴∠ADC=90°,∵點(diǎn)B是的重心,∴設(shè)則由勾股定理得∴(3)①當(dāng)時,Ⅰ.如圖3,作AE⊥BC于E,DF⊥AC于F,∵“等高底”△ABC的“等底”為BC,l1∥l1,l1與l1之間的距離為1,.∴∴BE=1,即EC=4,∴∵△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∠DCF=45°,設(shè)∵l1∥l1,∴∴即∴∴Ⅱ.如圖4,此時△ABC等腰直角三角形,∵△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到,∴是等腰直角三角形,∴②當(dāng)時,Ⅰ.如圖5,此時△ABC是等腰直角三角形,∵△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°得到△A'B'C,∴∴Ⅱ.如圖6,作于E,則∴∴∴△ABC繞點(diǎn)C按順時針方向旋轉(zhuǎn)45°,得到時,點(diǎn)A'在直線l1上,∴∥l1,即直線與l1無交點(diǎn),綜上所述,CD的值為【點(diǎn)睛】屬于新定義問題,考查對與等底高三角形概念的理解,勾股定理,等腰直角三角形的性質(zhì)等,掌握等底高三角形的性質(zhì)是解題的關(guān)鍵.24、(1)y=﹣x2﹣x+3;(2)點(diǎn)P的坐標(biāo)為(﹣,1);(3)當(dāng)AM+CN的值最大時,點(diǎn)D的坐標(biāo)為(,).【解析】
(1)利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可求出點(diǎn)A、C的坐標(biāo),由點(diǎn)B所在的位置結(jié)合點(diǎn)B的橫坐標(biāo)可得出點(diǎn)B的坐標(biāo),根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法即可求出拋物線的函數(shù)關(guān)系式;(2)過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,則△APE∽△ACO,由△PCD、△PAD有相同的高且S△PCD=2S△PAD,可得出CP=2AP,利用相似三角形的性質(zhì)即可求出AE、PE的長度,進(jìn)而可得出點(diǎn)P的坐標(biāo);(3)連接AC交OD于點(diǎn)F,由點(diǎn)到直線垂線段最短可找出當(dāng)AC⊥OD時AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,根據(jù)相似三角形的性質(zhì)可設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t),利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出關(guān)于t的一元二次方程,解之取其負(fù)值即可得出t值,再將其代入點(diǎn)D的坐標(biāo)即可得出結(jié)論.【詳解】(1)∵直線y=x+3與x軸、y軸分別交于A、C兩點(diǎn),∴點(diǎn)A的坐標(biāo)為(﹣4,0),點(diǎn)C的坐標(biāo)為(0,3).∵點(diǎn)B在x軸上,點(diǎn)B的橫坐標(biāo)為,∴點(diǎn)B的坐標(biāo)為(,0),設(shè)拋物線的函數(shù)關(guān)系式為y=ax2+bx+c(a≠0),將A(﹣4,0)、B(,0)、C(0,3)代入y=ax2+bx+c,得:,解得:,∴拋物線的函數(shù)關(guān)系式為y=﹣x2﹣x+3;(2)如圖1,過點(diǎn)P作PE⊥x軸,垂足為點(diǎn)E,∵△PCD、△PAD有相同的高,且S△PCD=2S△PAD,∴CP=2AP,∵PE⊥x軸,CO⊥x軸,∴△APE∽△ACO,∴,∴AE=AO=,PE=CO=1,∴OE=OA﹣AE=,∴點(diǎn)P的坐標(biāo)為(﹣,1);(3)如圖2,連接AC交OD于點(diǎn)F,∵AM⊥OD,CN⊥OD,∴AF≥AM,CF≥CN,∴當(dāng)點(diǎn)M、N、F重合時,AM+CN取最大值,過點(diǎn)D作DQ⊥x軸,垂足為點(diǎn)Q,則△DQO∽△AOC,∴,∴設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).∵點(diǎn)D在拋物線y=﹣x2﹣x+3上,∴4t=﹣3t2+t+3,解得:t1=﹣(不合題意,舍去),t2=,∴點(diǎn)D的坐標(biāo)為(,),故當(dāng)AM+CN的值最大時,點(diǎn)D的坐標(biāo)為(,).【點(diǎn)睛】本題考查了待定系數(shù)法求二次函數(shù)解析式、一次(二次)函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積以及相似三角形的性質(zhì),解題的關(guān)鍵是:(1)根據(jù)點(diǎn)A、B、C的坐標(biāo),利用待定系數(shù)法求出拋物線的函數(shù)關(guān)系式;(2)利用相似三角形的性質(zhì)找出AE、PE的長;(3)利用相似三角形的性質(zhì)設(shè)點(diǎn)D的坐標(biāo)為(﹣3t,4t).25、(1)0≤x≤10;(1)x=6;(3)y=﹣πx1+54πx.【解析】
(1)根據(jù)題意,得AC=CN+PN,進(jìn)一步求得AB的長,即可求得x的取值范圍;(1)根據(jù)等邊三角形的判定和性質(zhì)即可求解;(3)連接MN、EF,分別交AC于B、H.此題根據(jù)菱形CMPN的性質(zhì)求得MB的長,再根據(jù)相似三角形的對應(yīng)邊的比相等,求得圓的半徑即可.【詳解】(1)∵BC=1分米,AC=CN+PN=11分米,∴AB=AC﹣BC=10分米,∴x的取值范圍是:0≤x≤10;(1)∵CN=PN,∠CPN=60°,∴△PCN是等邊三角形,∴CP=6分米,∴AP=AC﹣PC=6分米,即當(dāng)∠CPN=60°時,x=6;(3)連接MN、EF,分別交AC于B、H,∵PM=PN=CM=CN,∴四邊形PNCM是菱形,∴MN與PC互相垂直平分,AC是∠ECF的平分線,PB==6-,在Rt△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年陜西省榆林十中高考語文模擬試卷(一)
- 2025年《價值為綱》學(xué)習(xí)心得例文(6篇)
- 彩色噴墨打印材料項(xiàng)目融資計(jì)劃書
- 物流行業(yè)2025版租賃協(xié)議6篇
- 2025版宿舍樓宿管員職責(zé)聘用合同3篇
- 2025年度新型存款居間代理管理合同4篇
- 2025年度知識產(chǎn)權(quán)質(zhì)押貸款協(xié)議4篇
- 2025版托盤銷售與新能源車輛運(yùn)輸服務(wù)合同范本3篇
- 2025年度個人與銀行個人貸款合作專項(xiàng)協(xié)議4篇
- 二零二五年度嬰幼兒奶粉品牌孵化與市場拓展合同
- 2024版塑料購銷合同范本買賣
- JJF 2184-2025電子計(jì)價秤型式評價大綱(試行)
- GB/T 44890-2024行政許可工作規(guī)范
- 2024年安徽省中考數(shù)學(xué)試卷含答案
- 2025屆山東省德州市物理高三第一學(xué)期期末調(diào)研模擬試題含解析
- 2024年滬教版一年級上學(xué)期語文期末復(fù)習(xí)習(xí)題
- 兩人退股協(xié)議書范文合伙人簽字
- 2024版【人教精通版】小學(xué)英語六年級下冊全冊教案
- 汽車噴漆勞務(wù)外包合同范本
- 2024年重慶南開(融僑)中學(xué)中考三模英語試題含答案
- 16J914-1 公用建筑衛(wèi)生間
評論
0/150
提交評論