山東省臨沂市臨沂市蒙陰縣達標名校2024屆中考考前最后一卷數(shù)學試卷含解析_第1頁
山東省臨沂市臨沂市蒙陰縣達標名校2024屆中考考前最后一卷數(shù)學試卷含解析_第2頁
山東省臨沂市臨沂市蒙陰縣達標名校2024屆中考考前最后一卷數(shù)學試卷含解析_第3頁
山東省臨沂市臨沂市蒙陰縣達標名校2024屆中考考前最后一卷數(shù)學試卷含解析_第4頁
山東省臨沂市臨沂市蒙陰縣達標名校2024屆中考考前最后一卷數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

山東省臨沂市臨沂市蒙陰縣達標名校2024屆中考考前最后一卷數(shù)學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.圓錐的底面直徑是80cm,母線長90cm,則它的側面積是A. B. C. D.2.已知一個多邊形的內(nèi)角和是1080°,則這個多邊形是()A.五邊形 B.六邊形 C.七邊形 D.八邊形3.某工廠計劃生產(chǎn)210個零件,由于采用新技術,實際每天生產(chǎn)零件的數(shù)量是原計劃的1.5倍,因此提前5天完成任務.設原計劃每天生產(chǎn)零件個,依題意列方程為()A. B.C. D.4.若關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍()A. B. C.且 D.5.二次函數(shù)的對稱軸是A.直線 B.直線 C.y軸 D.x軸6.一個正多邊形的內(nèi)角和為900°,那么從一點引對角線的條數(shù)是()A.3 B.4 C.5 D.67.長春市奧林匹克公園即將于2018年年底建成,它的總投資額約為2500000000元,2500000000這個數(shù)用科學記數(shù)法表示為()A.0.25×1010B.2.5×1010C.2.5×109D.25×1088.若代數(shù)式在實數(shù)范圍內(nèi)有意義,則x的取值范圍是()A. B. C. D.9.下列事件中,必然事件是()A.若ab=0,則a=0B.若|a|=4,則a=±4C.一個多邊形的內(nèi)角和為1000°D.若兩直線被第三條直線所截,則同位角相等10.如圖,在直角坐標系xOy中,若拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點D位于直線y=﹣2與x軸之間的區(qū)域(不包括直線y=﹣2和x軸),則l與直線y=﹣1交點的個數(shù)是()A.0個 B.1個或2個C.0個、1個或2個 D.只有1個二、填空題(共7小題,每小題3分,滿分21分)11.若分式方程有增根,則m的值為______.12.圖,A,B是反比例函數(shù)y=圖象上的兩點,過點A作AC⊥y軸,垂足為C,AC交OB于點D.若D為OB的中點,△AOD的面積為3,則k的值為________.13.一個正n邊形的中心角等于18°,那么n=_____.14.某風扇在網(wǎng)上累計銷量約1570000臺,請將1570000用科學記數(shù)法表示為_____.15.已知三個數(shù)據(jù)3,x+3,3﹣x的方差為,則x=_____.16.若一個正n邊形的每個內(nèi)角為144°,則這個正n邊形的所有對角線的條數(shù)是_________.17.某航班每次飛行約有111名乘客,若飛機失事的概率為p=1.11115,一家保險公司要為乘客保險,許諾飛機一旦失事,向每位乘客賠償41萬元人民幣.平均來說,保險公司應向每位乘客至少收取_____元保險費才能保證不虧本.三、解答題(共7小題,滿分69分)18.(10分)如圖,⊙O的直徑DF與弦AB交于點E,C為⊙O外一點,CB⊥AB,G是直線CD上一點,∠ADG=∠ABD.求證:AD?CE=DE?DF;說明:(1)如果你經(jīng)歷反復探索,沒有找到解決問題的方法,請你把探索過程中的某種思路過程寫出來(要求至少寫3步);(2)在你經(jīng)歷說明(1)的過程之后,可以從下列①、②、③中選取一個補充或更換已知條件,完成你的證明.①∠CDB=∠CEB;②AD∥EC;③∠DEC=∠ADF,且∠CDE=90°.19.(5分)如圖,有四張背面相同的卡片A、B、C、D,卡片的正面分別印有正三角形、平行四邊形、圓、正五邊形(這些卡片除圖案不同外,其余均相同).把這四張卡片背面向上洗勻后,進行下列操作:若任意抽取其中一張卡片,抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;若任意抽出一張不放回,然后再從余下的抽出一張.請用樹狀圖或列表表示摸出的兩張卡片所有可能的結果,求抽出的兩張卡片的圖形是中心對稱圖形的概率.20.(8分)如圖是小朋友蕩秋千的側面示意圖,靜止時秋千位于鉛垂線BD上,轉軸B到地面的距離BD=3m.小亮在蕩秋千過程中,當秋千擺動到最高點A時,測得點A到BD的距離AC=2m,點A到地面的距離AE=1.8m;當他從A處擺動到A′處時,有A'B⊥AB.(1)求A′到BD的距離;(2)求A′到地面的距離.21.(10分)某校為了解本校九年級男生體育測試中跳繩成績的情況,隨機抽取該校九年級若干名男生,調(diào)查他們的跳繩成績(次/分),按成績分成,,,,五個等級.將所得數(shù)據(jù)繪制成如下統(tǒng)計圖.根據(jù)圖中信息,解答下列問題:該校被抽取的男生跳繩成績頻數(shù)分布直方圖(1)本次調(diào)查中,男生的跳繩成績的中位數(shù)在________等級;(2)若該校九年級共有男生400人,估計該校九年級男生跳繩成績是等級的人數(shù).22.(10分)如圖,已知點C是∠AOB的邊OB上的一點,求作⊙P,使它經(jīng)過O、C兩點,且圓心在∠AOB的平分線上.23.(12分)某漁業(yè)養(yǎng)殖場,對每天打撈上來的魚,一部分由工人運到集貿(mào)市場按10元/斤銷售,剩下的全部按3元/斤的購銷合同直接包銷給外面的某公司:養(yǎng)殖場共有30名工人,每名工人只能參與打撈與到集貿(mào)市場銷售中的一項工作,且每人每天可以打撈魚100斤或銷售魚50斤,設安排x名員工負責打撈,剩下的負責到市場銷售.(1)若養(yǎng)殖場一天的總銷售收入為y元,求y與x的函數(shù)關系式;(2)若合同要求每天銷售給外面某公司的魚至少200斤,在遵守合同的前提下,問如何分配工人,才能使一天的銷售收入最大?并求出最大值.24.(14分)有甲、乙兩個不透明的布袋,甲袋中有兩個完全相同的小球,分別標有數(shù)字1和-1;乙袋中有三個完全相同的小球,分別標有數(shù)字-1、0和1.小麗先從甲袋中隨機取出一個小球,記錄下小球上的數(shù)字為x;再從乙袋中隨機取出一個小球,記錄下小球上的數(shù)字為y,設點P的坐標為(x,y).(1)請用表格或樹狀圖列出點P所有可能的坐標;(1)求點P在一次函數(shù)y=x+1圖象上的概率.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】圓錐的側面積=×80π×90=3600π(cm2).故選D.2、D【解析】

根據(jù)多邊形的內(nèi)角和=(n﹣2)?180°,列方程可求解.【詳解】設所求多邊形邊數(shù)為n,∴(n﹣2)?180°=1080°,解得n=8.故選D.【點睛】本題考查根據(jù)多邊形的內(nèi)角和計算公式求多邊形的邊數(shù),解答時要會根據(jù)公式進行正確運算、變形和數(shù)據(jù)處理.3、A【解析】

設原計劃每天生產(chǎn)零件x個,則實際每天生產(chǎn)零件為1.5x個,根據(jù)提前5天完成任務,列方程即可.【詳解】設原計劃每天生產(chǎn)零件x個,則實際每天生產(chǎn)零件為1.5x個,由題意得,故選:A.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是讀懂題意,設出未知數(shù),找出合適的等量關系,列方程即可.4、C【解析】

根據(jù)一元二次方程的定義結合根的判別式即可得出關于a的一元一次不等式組,解之即可得出結論.【詳解】解:∵關于x的一元二次方程有兩個不相等的實數(shù)根,∴,解得:k<1且k≠1.故選:C.【點睛】本題考查了一元二次方程的定義、根的判別式以及解一元一次不等式組,根據(jù)一元二次方程的定義結合根的判別式列出關于a的一元一次不等式組是解題的關鍵.5、C【解析】

根據(jù)頂點式y(tǒng)=a(x-h)2+k的對稱軸是直線x=h,找出h即可得出答案.【詳解】解:二次函數(shù)y=x2的對稱軸為y軸.

故選:C.【點睛】本題考查二次函數(shù)的性質(zhì),解題關鍵是頂點式y(tǒng)=a(x-h)2+k的對稱軸是直線x=h,頂點坐標為(h,k).6、B【解析】

n邊形的內(nèi)角和可以表示成(n-2)?180°,設這個多邊形的邊數(shù)是n,就得到關于邊數(shù)的方程,從而求出邊數(shù),再求從一點引對角線的條數(shù).【詳解】設這個正多邊形的邊數(shù)是n,則

(n-2)?180°=900°,

解得:n=1.

則這個正多邊形是正七邊形.所以,從一點引對角線的條數(shù)是:1-3=4.故選B【點睛】本題考核知識點:多邊形的內(nèi)角和.解題關鍵點:熟記多邊形內(nèi)角和公式.7、C【解析】【分析】科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值大于10時,n是正數(shù);當原數(shù)的絕對值小于1時,n是負數(shù).【詳解】2500000000的小數(shù)點向左移動9位得到2.5,所以2500000000用科學記數(shù)表示為:2.5×1.故選C.【點睛】本題考查了科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.8、D【解析】試題解析:要使分式有意義,則1-x≠0,解得:x≠1.故選D.9、B【解析】

直接利用絕對值的性質(zhì)以及多邊形的性質(zhì)和平行線的性質(zhì)分別分析得出答案.【詳解】解:A、若ab=0,則a=0,是隨機事件,故此選項錯誤;B、若|a|=4,則a=±4,是必然事件,故此選項正確;C、一個多邊形的內(nèi)角和為1000°,是不可能事件,故此選項錯誤;D、若兩直線被第三條直線所截,則同位角相等,是隨機事件,故此選項錯誤;故選:B.【點睛】此題主要考查了事件的判別,正確把握各命題的正確性是解題關鍵.10、C【解析】

根據(jù)題意,利用分類討論的數(shù)學思想可以得到l與直線y=﹣1交點的個數(shù),從而可以解答本題.【詳解】∵拋物線l:y=﹣x2+bx+c(b,c為常數(shù))的頂點D位于直線y=﹣2與x軸之間的區(qū)域,開口向下,∴當頂點D位于直線y=﹣1下方時,則l與直線y=﹣1交點個數(shù)為0,當頂點D位于直線y=﹣1上時,則l與直線y=﹣1交點個數(shù)為1,當頂點D位于直線y=﹣1上方時,則l與直線y=﹣1交點個數(shù)為2,故選C.【點睛】考查拋物線與x軸的交點、二次函數(shù)的性質(zhì),解答本題的關鍵是明確題意,利用函數(shù)的思想和分類討論的數(shù)學思想解答.二、填空題(共7小題,每小題3分,滿分21分)11、-1【解析】

增根是分式方程化為整式方程后產(chǎn)生的使分式方程的分母為0的根.把增根代入化為整式方程的方程即可求出m的值.【詳解】方程兩邊都乘(x-1),得x-1(x-1)=-m∵原方程增根為x=1,∴把x=1代入整式方程,得m=-1,故答案為:-1.【點睛】本題考查了分式方程的增根,增根確定后可按如下步驟進行:化分式方程為整式方程;把增根代入整式方程即可求得相關字母的值.12、1.【解析】先設點D坐標為(a,b),得出點B的坐標為(2a,2b),A的坐標為(4a,b),再根據(jù)△AOD的面積為3,列出關系式求得k的值.解:設點D坐標為(a,b),∵點D為OB的中點,∴點B的坐標為(2a,2b),∴k=4ab,又∵AC⊥y軸,A在反比例函數(shù)圖象上,∴A的坐標為(4a,b),∴AD=4a﹣a=3a,∵△AOD的面積為3,∴×3a×b=3,∴ab=2,∴k=4ab=4×2=1.故答案為1“點睛”本題主要考查了反比例函數(shù)系數(shù)k的幾何意義,以及運用待定系數(shù)法求反比例函數(shù)解析式,根據(jù)△AOD的面積為1列出關系式是解題的關鍵.13、20【解析】

由正n邊形的中心角為18°,可得方程18n=360,解方程即可求得答案.【詳解】∵正n邊形的中心角為18°,∴18n=360,∴n=20.故答案為20.【點睛】本題考查的知識點是正多邊形和圓,解題的關鍵是熟練的掌握正多邊形和圓.14、1.57×1【解析】

科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù).確定n的值時,要看把原數(shù)變成a時,小數(shù)點移動了多少位,n的絕對值與小數(shù)點移動的位數(shù)相同.當原數(shù)絕對值>1時,n是正數(shù);當原數(shù)的絕對值<1時,n是負數(shù).【詳解】將1570000用科學記數(shù)法表示為1.57×1.故答案為1.57×1.【點睛】此題考查科學記數(shù)法的表示方法.科學記數(shù)法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數(shù),表示時關鍵要正確確定a的值以及n的值.15、±1【解析】

先由平均數(shù)的計算公式求出這組數(shù)據(jù)的平均數(shù),再代入方差公式進行計算,即可求出x的值.【詳解】解:這三個數(shù)的平均數(shù)是:(3+x+3+3-x)÷3=3,則方差是:[(3-3)2+(x+3-3)2+(3-x-3)2]=,解得:x=±1;故答案為:±1.【點睛】本題考查方差的定義:一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.16、2【解析】

由正n邊形的每個內(nèi)角為144°結合多邊形內(nèi)角和公式,即可得出關于n的一元一次方程,解方程即可求出n的值,將其代入中即可得出結論.【詳解】∵一個正n邊形的每個內(nèi)角為144°,

∴144n=180×(n-2),解得:n=1.

這個正n邊形的所有對角線的條數(shù)是:==2.

故答案為2.【點睛】本題考查了多邊形的內(nèi)角以及多邊形的對角線,解題的關鍵是求出正n邊形的邊數(shù).本題屬于基礎題,難度不大,解決該題型題目時,根據(jù)多邊形的內(nèi)角和公式求出多邊形邊的條數(shù)是關鍵.17、21【解析】每次約有111名乘客,如飛機一旦失事,每位乘客賠償41萬人民幣,共計4111萬元,由題意可得一次飛行中飛機失事的概率為P=1.11115,所以賠償?shù)腻X數(shù)為41111111×1.11115=2111元,即可得至少應該收取保險費每人=21元.三、解答題(共7小題,滿分69分)18、(1)見解析;(2)見解析.【解析】

連接AF,由直徑所對的圓周角是直角、同弧所對的圓周角相等的性質(zhì),證得直線CD是⊙O的切線,若證AD?CE=DE?DF,只要征得△ADF∽△DEC即可.在第一問中只能證得∠EDC=∠DAF=90°,所以在第二問中只要證得∠DEC=∠ADF即可解答此題.【詳解】(1)連接AF,∵DF是⊙O的直徑,∴∠DAF=90°,∴∠F+∠ADF=90°,∵∠F=∠ABD,∠ADG=∠ABD,∴∠F=∠ADG,∴∠ADF+∠ADG=90°∴直線CD是⊙O的切線∴∠EDC=90°,∴∠EDC=∠DAF=90°;(2)選?、偻瓿勺C明∵直線CD是⊙O的切線,∴∠CDB=∠A.∵∠CDB=∠CEB,∴∠A=∠CEB.∴AD∥EC.∴∠DEC=∠ADF.∵∠EDC=∠DAF=90°,∴△ADF∽△DEC.∴AD:DE=DF:EC.∴AD?CE=DE?DF.【點睛】此題考查了切線的性質(zhì)與判定、弦切角定理、相似三角形的判定與性質(zhì)等知識.注意乘積的形式可以轉化為比例的形式,通過證明三角形相似得出.還要注意構造直徑所對的圓周角是圓中的常見輔助線.19、(1);(2).【解析】

(1)既是中心對稱圖形又是軸對稱圖形只有圓一個圖形,然后根據(jù)概率的意義解答即可;(2)畫出樹狀圖,然后根據(jù)概率公式列式計算即可得解.【詳解】(1)∵正三角形、平行四邊形、圓、正五邊形中只有圓既是中心對稱圖形又是軸對稱圖形,∴抽到的卡片既是中心對稱圖形又是軸對稱圖形的概率是;(2)根據(jù)題意畫出樹狀圖如下:一共有12種情況,抽出的兩張卡片的圖形是中心對稱圖形的是B、C共有2種情況,所以,P(抽出的兩張卡片的圖形是中心對稱圖形).【點睛】本題考查了列表法和樹狀圖法,用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.20、(1)A'到BD的距離是1.2m;(2)A'到地面的距離是1m.【解析】

(1)如圖2,作A'F⊥BD,垂足為F.根據(jù)同角的余角相等證得∠2=∠3;再利用AAS證明△ACB≌△BFA',根據(jù)全等三角形的性質(zhì)即可得A'F=BC,根據(jù)BC=BD﹣CD求得BC的長,即可得A'F的長,從而求得A'到BD的距離;(2)作A'H⊥DE,垂足為H,可證得A'H=FD,根據(jù)A'H=BD﹣BF求得A'H的長,從而求得A'到地面的距離.【詳解】(1)如圖2,作A'F⊥BD,垂足為F.∵AC⊥BD,∴∠ACB=∠A'FB=90°;在Rt△A'FB中,∠1+∠3=90°;又∵A'B⊥AB,∴∠1+∠2=90°,∴∠2=∠3;在△ACB和△BFA'中,,∴△ACB≌△BFA'(AAS);∴A'F=BC,∵AC∥DE且CD⊥AC,AE⊥DE,∴CD=AE=1.8;∴BC=BD﹣CD=3﹣1.8=1.2,∴A'F=1.2,即A'到BD的距離是1.2m.(2)由(1)知:△ACB≌△BFA',∴BF=AC=2m,作A'H⊥DE,垂足為H.∵A'F∥DE,∴A'H=FD,∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距離是1m.【點睛】本題考查了全等三角形的判定與性質(zhì)的應用,作出輔助線,證明△ACB≌△BFA'是解決問題的關鍵.21、(1)C;(2)100【解析】

(1)根據(jù)中位數(shù)的定義即可作出判斷;(2)先算出樣本中C等級的百分比,再用總數(shù)乘以400即可.【詳解】解:(1)由直方圖中可知數(shù)據(jù)總數(shù)為40個,第20,21個數(shù)據(jù)的平均數(shù)為本組數(shù)據(jù)的中位數(shù),第20,21個數(shù)據(jù)的等級都是C等級,故本次調(diào)查中,男生的跳繩成績的中位數(shù)在C等級;故答案為C.(2)400=100(人)答:估計該校九年級男生跳繩成績是等級的人數(shù)有100人

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論