Engineering Basic Mechanics I Statics 工程基礎(chǔ)力學(xué)Ⅰ 靜力學(xué) 課件 Chapter 8 Shear and Torsion_第1頁
Engineering Basic Mechanics I Statics 工程基礎(chǔ)力學(xué)Ⅰ 靜力學(xué) 課件 Chapter 8 Shear and Torsion_第2頁
Engineering Basic Mechanics I Statics 工程基礎(chǔ)力學(xué)Ⅰ 靜力學(xué) 課件 Chapter 8 Shear and Torsion_第3頁
Engineering Basic Mechanics I Statics 工程基礎(chǔ)力學(xué)Ⅰ 靜力學(xué) 課件 Chapter 8 Shear and Torsion_第4頁
Engineering Basic Mechanics I Statics 工程基礎(chǔ)力學(xué)Ⅰ 靜力學(xué) 課件 Chapter 8 Shear and Torsion_第5頁
已閱讀5頁,還剩63頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

StaticsStaticsofdeformablebodyChapter8

ShearandTorsionContents8.1Theconceptofshear8.2Practicalcalculationofshearand

bearing8.3Theconceptoftorsion8.4Torqueandtorquediagram8.5Torsionofthin-walledcylinders8.6Stressanddeformationduringtorsionofcircularshafts 8.7Torsionalstrengthandrigidity SmallshearingmachineBoltedconnectionRivetedconnectionPinconnectionFlatkeyconnection8.1TheconceptofshearFFmn0FFFsinglesheardoubleshearBearingbearingstress

:pressureonthebearingsurfacebearingdeformation:deformationonthecontactsurfacebearingsurface:thecontactsurfaceFFBearingsurface8.2Practicalcalculationofshearandbearing1、Practicalcalculationofshear

FFQtTheshearstressτisuniformlydistributedontheshearsurface.SotheformulaofshearstressiswhereAistheareaoftheshearsurface.Thisshearstressisbasedonassumptionsandisnotthetrueshearstress,whichisusuallyreferredtothenominalshearstress.Whentheshearstressτontheshearplanereachesacertainvalue,theshearmemberwillbedamagedbyshear.Allowableshearstress

Thisistheshearstrengthcondition.Iftheshearultimatestressofthematerialisandnisthesafetyfactorthentheallowableshearstressofthematerial

isExperimentalresultsshowthattheshearultimatestrengthofthematerialhasanapproximateproportionalrelationshipwiththetensile(compressive)ultimatestrength.Plasticmaterials:Brittlematerials:Basedonthisrelationship,thevalueofthetensileallowablestress[σ]isoftenusedinengineeringtoestimatethevalueoftheshearallowablestress[τ].

Example1

ThepinconnectionstructureisshowninFigure.TheloadisknowntobeF=15kN.Thethicknessist=8mm,thediameterofthepinisd=20mmandthepinallowableshearstressis[τ]=30MPa.Checktheshearstrengthofthepin.0FFd1.5tttFmmnnFQFQmmnn2F2Fsolution:FromthesectionmethoditiseasytofindSowecangetThereforethepinmeetsthestrengthrequirements.Theshearstressreachestheultimatestressofthematerial,i.e.FBearingpressure:forceactingonthecontactsurfacebearingdeformation:deformationonthecontactsurfacebearingsurface:thecontactsurfacebearingstress:pressureonthebearingsurfaceFFwhereAjyisthebearingsurfacearea.Thisbearingstressisnotthetruestressandisusuallyreferredtoasthenominalbearingstress.Bearingsurface2、Practicalcalculationofbearing

Thecalculationoftheareaoftheextrudedsurfaceisdiscussedintwocasesasfollows:(1)Whenthecontactsurfaceisflat,theareaoftheextrudedsurfaceforcalculationistheactualcontactsurfacearea,i.e.

lhh2(2)Whenthecontactsurfaceisasemi-cylindricalsurface,theareaofthebearingsurfaceforcalculationisthediameterprojectionareaoftheactualcontactsurface.Inthisway,thenominalbearingstresscalculatedinaccordancewithequationandtheactualmaximumbearingstressareverysimilar.tdShearingsurfaceDiameterprojectionareaActualcontactareaTopreventbearingdamage,themaximumbearingstressshouldnotexceedtheallowablebearingstress[σjy]ofthematerial,i.e.

Thisisthebearingstrengthcondition.Theallowablebearingstressandtheallowabletensilestress[σ]arerelatedasfollows:Plasticmaterials:Brittlematerials:Ifthetwocontactingmembersareofdifferentmaterials,thecalculationshouldbemadeforthememberwiththeweakerbearingstrength.

Therearethreepossibledamagetoconnectionscommonlyusedinengineering:Oneisthatthememberisshearedalongtheshearsurface;Second,Thebearingsurfaceshowsobviousplasticdeformation,whichmakestheconnectingrodloose;Third,theconnectionplatemaybepulledoffbecausethecross-sectionisweakenedafterdrilling.3、Strengthcalculationofconnectionparts

Tomakefulluseofthematerial,theshearandbearingstressesshouldmeet:DiscussionAjointisshowninthefigure.Itisknownthattheplateandrivetareofthesamematerialandthatσbs=2[τ].Tomakefulluseofthematerial,therivetdiameterdshouldbe________Example2

ArivetedjointstructureisshowninFig(a)withaknownloadF=100kN,arivetdiameterd=16mm,anallowabletensilestress[σ]=160MPaforthesteelplate.Theallowableshearstressis[τ]=130MPafortherivetandtheallowablebearingstressis[σjy]=320MPafortheplateandrivet.Checkthestrengthofthestructure.Fd=16mmF=100kN(a)t=10mmt=10mmSolution

Therearethreepossibleformsofdamagetoarivetedjointstructure:damagetotherivetduetoshear;damagetotherivetorsteelplateduetobearing;anddamagetothesteelplateduetotension.(1)ChecktheshearstrengthoftherivetTheforceoneachrivetisTherefore,theshearforceontheshearplaneoftherivetis

Theshearstressintherivetisthus321123F4F4F4p4FFb=90mmFF=100kNt=10mmd=16mmFF1p2p10FF123F3214p4p4p4pb=90Fd=16F=100KNt=10t=10(2)Checkthebearingstrengthoftherivetthebearingforceoftherivet:thebearingstressis2314p34FF1123F3214p4p4p4p+FF=100kN(3)Checkthetensilestrengthofthesteelplate.Sectionmethodsection2-2:section3-3:

Insummary,theentirestructure

meetsthestrengthrequirements.Apairofcoupleswithequalmagnitudeandoppositedirectionisappliedattheendsoftherod.Thecoupleplaneisperpendiculartotheaxisoftherod.Anytwocrosssectionsoftherodrotaterelativetoeachotheraroundtheaxisofthebar.Thisformofdeformationoftherodiscalledtorsionaldeformation.

Accordingtothesectionmethod,whentorsionaldeformationoccurstotherod,theinternalforceonthecrosssectionisonlythemomentofthecouplelocatedontheface.Itiscalledtorque.8.3Theconceptoftorsion1、CalculationoftheexternalmomentofcoupleIfthepowerisexpressedinNk(kW)andtherotationalspeedisn(r/min),themomentisM,wecanget

Note:TheunitofNk

iskW,andtheunitofnisr/min.WhenthepowerishorsepowerNH

(H.P,1horsepower=735.5W),theformulaforcalculatingtheexternalmomentofcoupleis

8.4Torqueandtorquediagram2、TorqueandtorquediagramAssumethatthecircularaxisisdividedintotwosectionsalongthesectionm-m,theequilibriumoftheleftsectionasfollowingSowegetwhereMnisthecombinedmomentofthedistributedinternalforcesystemofthetwopartsIandIIinteractingonthesectionm-m.Similarly,iftherightsectionisthesubjectofstudy,thetorqueMnonsectionm-mcanalsobefound.Itsvalueisstillm,butitssteeringisoppositeMMnnIIIMnnIInnIxMnMnM

Thesignofthetorquecanbespecifiedasfollows:thetorqueMnisexpressedasavectoraccordingtotheright-handspiralrule.Whenthedirectionofthevectoristhesameasthedirectionoftheouternormalofthesection,thetorqueMnispositive,andtheoppositeisnegative.Inthisway,Thetorqueonthecrosssectionm-mispositivebothforpartIandpartII.

AgraphicalrepresentationofthevariationoftorqueMninthedirectionoftheaxisiscalledatorquediagram.Torquediagramsaredrawninasimilarwaytoaxialforcediagrams.

Example3

OntheshaftshowninFigure,theactivewheelAisconnectedtotheprimemoverandthedrivenwheelsB,CandDareconnectedtothemachinetool.TheinputpowerofwheelAisknowntobeNA=50kW,theoutputsofwheelsB,CandDareNB=NC=15kWandND=20kW,respectively.Thespeedoftheshaftisn=300r/min.Trytofindthetorqueineachsectionoftheshaftanddrawatorquediagram.(a)AMBMCMDMBACDIIIIIIIIIIIICSolution(1)Calculatetheexternalmomentofcouple(2)CalculatetorqueSectionBC:cuttheshaftalongsectionI.Fromtheequilibriumequation,wegetBMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDMAnegativeresultindicatesthattheactualdirectionofthetorqueIisoppositetothedirectionset.ThetorqueoneachsectionwithinthesectionBCisconstant,sothetorquediagraminthissectionisahorizontalline(Fig.e).SectionCA:ThereforeSectionAD:BMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDM+-(3)Makingtorquediagram

Ascanbeseenfromthegraph,themaximumtorqueoccursinthesectionCAwithanabsolutevalueofBMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDM

8.5Torsionofthin-walledcylinders

Inordertostudythestressanddeformationduringtorsionofacircularshaft,thetorsionofathin-walledcylinderisfirstdiscussedtounderstandthelawofshearstressandshearstrainandtherelationshipbetweenthem.1.Stressinthin-walledcylindersduringtorsionInthefigureabove,athin-walledcylinderofequalthicknessisshown.Afterapplyinganexternalmomentatbothends,thefollowingphenomenacanbeobserved:

(1)Theshape,sizeandspacingofthecircumferentiallinesonthesurfaceofthecylinderremainunchanged,andjustrotaterelativelyaroundtheaxis.(2)Eachlongitudinallineisinclinedatthesameangleγ,andcanstillbeapproximatedasastraightline.

(3)Tinyrectangleformedbythelongitudinalandcircumferentiallinesbecomesaparallelogram.tRjg1Therearenonormalstressesineachcrosssectionofthecylindertwisted,onlytheshearingstressesperpendiculartotheradius.Theshearstressisthesameateverypointalongthecircumferenceofthecross-section.2Theshearstressesareuniformlydistributedalongthewallthicknessdirection.3ItsdirectioncoincideswiththesteeringofthetorqueMninthecrosssection.MnMnabcddxnMjgRRdqItfollowsfromstaticsthatsoor

whereistheareaenclosedbythemidlineofthecylinderwallonthecrosssection.RRdAdqt(e)Letlandbethelengthandtherelativeangleoftwistatbothendsofthethin-walledcylinderrespectively.Wecangetthereforetheshearstrainisproportionaltothetorsionangle.jgcabdgg2.PureshearShearforceEquilibriumconditioncouplemoment

Astheelementisinequilibrium,inthetopandbottomsurfaceoftheelement,theremustalsobeshearstressτ’

yxzdxtt¢dytTheaboveequationshowsthatshearstressmustexistinpairswithequalvaluesonthetwoplanesperpendiculartoeachotherintheelement.Theshearstressesarebothperpendiculartotheintersectionofthetwoplanes.Thedirectionisofpointingtoordeviatingfromthisintersectionconsistently.Thisrelationshipisknownasthetheoremofcomplementaryshearingstresses.Asshowninthefigureonthetop,bottom,leftandrightfoursidesoftheunitbodyonlyshearstressandnopositivestressexist,thestressstateofunitbodyiscalledpureshearstate.yxzdxtt¢dyt3.Hook'sLawinshear

Theτ-γcurveforlowcarbonsteelisshowninabovepictureHook'sLawinshear

WhereGisaconstantofproportionality,knownastheshearmodulusofelasticity.Itisanindicatoroftheabilityofamaterialtoresistsheardeformation.Becauseγisdimensionless,Ghasthesameunitastheτ.TheG-valueofthesteelisabout80GPa.gttg0

"Hooke'slawintensionandcompression","Hooke'slawinshear"and"theoremofcomplementaryshearingstresses"arethefundamentaltheoremsofmaterialmechanics.ThetensilemodulusofelasticityE,theshearmodulusofelasticityGandthePoisson'sratioμarethreeelasticconstantsofamaterial.Forisotropicelasticmaterials,thefollowingrelationshipsexistbetweenthem.

Onlytwoofthethreeelasticconstantsareindependent.4.Energyofsheardeformation

whentheshearstressdoesnotexceedtheshearproportionallimitofthematerial,theangleφoftwistisproportionaltotheexternaltorqueM.TheworkdonebytheexternalmomentisEnergyofsheardeformationU,

Strainenergyperunitvolumeisthestrainenergydensityu.ThevalueofushouldbeequaltotheshearstrainenergyUdividedbythevolumeofthethin-walledcylinder.SoAccordingtoHook'sLawinshear,wecanget

8.6Stressanddeformationduringtorsionofcircularshafts Trainofthought:Geometricrelation(planesectionhypothesis)RelationshipbetweenshearstrainandrelativeangleoftwistPhysicalrelation(Hook'sLaw)RelationshipbetweenshearstressandrelativeangleoftwistStaticrelation(Thecombinedmomentofshearstressontheshaft,i.e.thetorqueonthecrosssection)Relativeangleoftwistexpressionandshearstressexpression1.Stressduringtorsionofacircularshaft1.GeometricrelationAmicro-sectionoflengthdxisinterceptedfromthecircularshaftAsmallrelativemisalignmentoftheabsideTheanglechangeγoftheoriginalrectangleonthesurfaceofthecircularshaftisTheshearstraininthecross-sectionatadistanceρfromthecenterofthecircleis(a)jxeMeMmndxmn2.PhysicalrelationWhentheshearstressdoesnotexceedtheshearproportionallimitofthematerial,theshearstressisproportionaltotheshearstrain,thatis,obeyingtheshearHooke'slaw

(b)Substituteequation(a)intoequation(b)tofindtheshearstressatthedistanceρfromtheaxisas

(c)Theaboveformulashowsthattheshearstressτρa(bǔ)tanypointinthecrosssectionisproportionaltothedistanceρ.Theshearstressvariesalongtheradiusinalinearfashion,withzeroshearstressatthecentreofthecircleandthemaximumshearstressatpointsonthecircumferentialedge.

Accordingtothetheoremofcomplementaryshearingstresses,thedistributionofshearstressesalongtheradiusinthelongitudinalandtransversesectionsofthesolidcircularshaftisshownasfollows.rt3.Staticrelation

TakeamicroareadA,micro-shearforcesonthemicro-areadA:Correspondingmicro-momentstothecenterofthecircle:torque

(d)Substituteintoaboveequation,weget

dArtdAnMrOTheintegralintheaboveequationisaquantityrelatedtothegeometryanddimensionsofthecrosssection.Itiscalledthepolarmomentofinertiaofthecrosssection.(denotedas)

rtdAdAnMrOequation(d)canagainbewrittenasconsidering

weget

Thisistheformulaforcalculatingtheshearstressatanypointonthecrosssectionwhenthecircularshaftistwisted.

Accordingtoequation

Wecanknow,whenρ=R(i.e.ateachpointontheedgeofthecrosssection),theshearstresstakesitsmaximumvalue.

let,aboveequationcancanbewrittenas

WhereWniscalledthesectionmodulusoftorsion.4.TorsionaldeformationofcircularshaftThetorsionaldeformationofacircularshaftcanbeexpressedintermsoftherelativeangleoftwistoftwocrosssections.

Integratingbothsidesoftheaboveequationgivestherelativeangleoftwistofthetwosectionsseparatedbyl.

Foracircularshaftofequalcross-sectionmadeofthesamematerial(ItsGIPisaconstant),Ifthetorquebetweenthetwocrosssections(distancel)isalsoconstant,thetorsionanglebetweenthetwosections

is

Thisistheformulaforcalculatingthetorsionaldeformationofacircularshaftofequalcrosssection.

isknownasthetorsionalrigidity.

ThesignoftheangleoftwistisspecifiedinthesamewayasthatoftorqueMnanditsunitisradian(rad).

Ifthetorqueortorsionalrigiditybetweentwocrosssectionsisvariable,therelativetorsionalanglesofthetwosectionsshouldbecalculatedbyintegratingthetorsionalanglesofeachsectioninaccordancewithequationandthensummingthemalgebraically.5.Polarmomentsofinertiaandsectionmodulusoftorsion

annularmicroarea:polarmomentofinertiaofcircularsection:

drRDmaxtmaxtmaxtsectionmodulusoftorsion:

whereDisthediameterofthecircularsection.ThedimensionofIpisthefourthpowerofthelengthandthedimensionofWnisthethirdpowerofthelength.rOdrRDmaxtmaxtmaxtforthehollowcircularshaft,

WhereDanddaretheouterandinnerdiametersofthehollowcircularsection,respectively.rOdrRDmaxtmaxtmaxt6、ApplicationconditionsofstressanddeformationformuladuringtorsionTheabovestressanddeformationequationsarederivedbasedontherigidplanehypothesis.Theseformulasareonlyapplicabletoisotropiccircularbars.Whenthecircularcrosssectionchangesslowlyalongtheaxis,itcanalsobeapproximatedbytheaboveformulae.IpandWnarealsochangingalongtheaxisatthesametime.

Onlywhen,aboveequationsarecorrect.8.7Torsion

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論