版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
StaticsStaticsofdeformablebodyChapter8
ShearandTorsionContents8.1Theconceptofshear8.2Practicalcalculationofshearand
bearing8.3Theconceptoftorsion8.4Torqueandtorquediagram8.5Torsionofthin-walledcylinders8.6Stressanddeformationduringtorsionofcircularshafts 8.7Torsionalstrengthandrigidity SmallshearingmachineBoltedconnectionRivetedconnectionPinconnectionFlatkeyconnection8.1TheconceptofshearFFmn0FFFsinglesheardoubleshearBearingbearingstress
:pressureonthebearingsurfacebearingdeformation:deformationonthecontactsurfacebearingsurface:thecontactsurfaceFFBearingsurface8.2Practicalcalculationofshearandbearing1、Practicalcalculationofshear
FFQtTheshearstressτisuniformlydistributedontheshearsurface.SotheformulaofshearstressiswhereAistheareaoftheshearsurface.Thisshearstressisbasedonassumptionsandisnotthetrueshearstress,whichisusuallyreferredtothenominalshearstress.Whentheshearstressτontheshearplanereachesacertainvalue,theshearmemberwillbedamagedbyshear.Allowableshearstress
Thisistheshearstrengthcondition.Iftheshearultimatestressofthematerialisandnisthesafetyfactorthentheallowableshearstressofthematerial
isExperimentalresultsshowthattheshearultimatestrengthofthematerialhasanapproximateproportionalrelationshipwiththetensile(compressive)ultimatestrength.Plasticmaterials:Brittlematerials:Basedonthisrelationship,thevalueofthetensileallowablestress[σ]isoftenusedinengineeringtoestimatethevalueoftheshearallowablestress[τ].
Example1
ThepinconnectionstructureisshowninFigure.TheloadisknowntobeF=15kN.Thethicknessist=8mm,thediameterofthepinisd=20mmandthepinallowableshearstressis[τ]=30MPa.Checktheshearstrengthofthepin.0FFd1.5tttFmmnnFQFQmmnn2F2Fsolution:FromthesectionmethoditiseasytofindSowecangetThereforethepinmeetsthestrengthrequirements.Theshearstressreachestheultimatestressofthematerial,i.e.FBearingpressure:forceactingonthecontactsurfacebearingdeformation:deformationonthecontactsurfacebearingsurface:thecontactsurfacebearingstress:pressureonthebearingsurfaceFFwhereAjyisthebearingsurfacearea.Thisbearingstressisnotthetruestressandisusuallyreferredtoasthenominalbearingstress.Bearingsurface2、Practicalcalculationofbearing
Thecalculationoftheareaoftheextrudedsurfaceisdiscussedintwocasesasfollows:(1)Whenthecontactsurfaceisflat,theareaoftheextrudedsurfaceforcalculationistheactualcontactsurfacearea,i.e.
lhh2(2)Whenthecontactsurfaceisasemi-cylindricalsurface,theareaofthebearingsurfaceforcalculationisthediameterprojectionareaoftheactualcontactsurface.Inthisway,thenominalbearingstresscalculatedinaccordancewithequationandtheactualmaximumbearingstressareverysimilar.tdShearingsurfaceDiameterprojectionareaActualcontactareaTopreventbearingdamage,themaximumbearingstressshouldnotexceedtheallowablebearingstress[σjy]ofthematerial,i.e.
Thisisthebearingstrengthcondition.Theallowablebearingstressandtheallowabletensilestress[σ]arerelatedasfollows:Plasticmaterials:Brittlematerials:Ifthetwocontactingmembersareofdifferentmaterials,thecalculationshouldbemadeforthememberwiththeweakerbearingstrength.
Therearethreepossibledamagetoconnectionscommonlyusedinengineering:Oneisthatthememberisshearedalongtheshearsurface;Second,Thebearingsurfaceshowsobviousplasticdeformation,whichmakestheconnectingrodloose;Third,theconnectionplatemaybepulledoffbecausethecross-sectionisweakenedafterdrilling.3、Strengthcalculationofconnectionparts
Tomakefulluseofthematerial,theshearandbearingstressesshouldmeet:DiscussionAjointisshowninthefigure.Itisknownthattheplateandrivetareofthesamematerialandthatσbs=2[τ].Tomakefulluseofthematerial,therivetdiameterdshouldbe________Example2
ArivetedjointstructureisshowninFig(a)withaknownloadF=100kN,arivetdiameterd=16mm,anallowabletensilestress[σ]=160MPaforthesteelplate.Theallowableshearstressis[τ]=130MPafortherivetandtheallowablebearingstressis[σjy]=320MPafortheplateandrivet.Checkthestrengthofthestructure.Fd=16mmF=100kN(a)t=10mmt=10mmSolution
Therearethreepossibleformsofdamagetoarivetedjointstructure:damagetotherivetduetoshear;damagetotherivetorsteelplateduetobearing;anddamagetothesteelplateduetotension.(1)ChecktheshearstrengthoftherivetTheforceoneachrivetisTherefore,theshearforceontheshearplaneoftherivetis
Theshearstressintherivetisthus321123F4F4F4p4FFb=90mmFF=100kNt=10mmd=16mmFF1p2p10FF123F3214p4p4p4pb=90Fd=16F=100KNt=10t=10(2)Checkthebearingstrengthoftherivetthebearingforceoftherivet:thebearingstressis2314p34FF1123F3214p4p4p4p+FF=100kN(3)Checkthetensilestrengthofthesteelplate.Sectionmethodsection2-2:section3-3:
Insummary,theentirestructure
meetsthestrengthrequirements.Apairofcoupleswithequalmagnitudeandoppositedirectionisappliedattheendsoftherod.Thecoupleplaneisperpendiculartotheaxisoftherod.Anytwocrosssectionsoftherodrotaterelativetoeachotheraroundtheaxisofthebar.Thisformofdeformationoftherodiscalledtorsionaldeformation.
Accordingtothesectionmethod,whentorsionaldeformationoccurstotherod,theinternalforceonthecrosssectionisonlythemomentofthecouplelocatedontheface.Itiscalledtorque.8.3Theconceptoftorsion1、CalculationoftheexternalmomentofcoupleIfthepowerisexpressedinNk(kW)andtherotationalspeedisn(r/min),themomentisM,wecanget
Note:TheunitofNk
iskW,andtheunitofnisr/min.WhenthepowerishorsepowerNH
(H.P,1horsepower=735.5W),theformulaforcalculatingtheexternalmomentofcoupleis
8.4Torqueandtorquediagram2、TorqueandtorquediagramAssumethatthecircularaxisisdividedintotwosectionsalongthesectionm-m,theequilibriumoftheleftsectionasfollowingSowegetwhereMnisthecombinedmomentofthedistributedinternalforcesystemofthetwopartsIandIIinteractingonthesectionm-m.Similarly,iftherightsectionisthesubjectofstudy,thetorqueMnonsectionm-mcanalsobefound.Itsvalueisstillm,butitssteeringisoppositeMMnnIIIMnnIInnIxMnMnM
Thesignofthetorquecanbespecifiedasfollows:thetorqueMnisexpressedasavectoraccordingtotheright-handspiralrule.Whenthedirectionofthevectoristhesameasthedirectionoftheouternormalofthesection,thetorqueMnispositive,andtheoppositeisnegative.Inthisway,Thetorqueonthecrosssectionm-mispositivebothforpartIandpartII.
AgraphicalrepresentationofthevariationoftorqueMninthedirectionoftheaxisiscalledatorquediagram.Torquediagramsaredrawninasimilarwaytoaxialforcediagrams.
Example3
OntheshaftshowninFigure,theactivewheelAisconnectedtotheprimemoverandthedrivenwheelsB,CandDareconnectedtothemachinetool.TheinputpowerofwheelAisknowntobeNA=50kW,theoutputsofwheelsB,CandDareNB=NC=15kWandND=20kW,respectively.Thespeedoftheshaftisn=300r/min.Trytofindthetorqueineachsectionoftheshaftanddrawatorquediagram.(a)AMBMCMDMBACDIIIIIIIIIIIICSolution(1)Calculatetheexternalmomentofcouple(2)CalculatetorqueSectionBC:cuttheshaftalongsectionI.Fromtheequilibriumequation,wegetBMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDMAnegativeresultindicatesthattheactualdirectionofthetorqueIisoppositetothedirectionset.ThetorqueoneachsectionwithinthesectionBCisconstant,sothetorquediagraminthissectionisahorizontalline(Fig.e).SectionCA:ThereforeSectionAD:BMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDM+-(3)Makingtorquediagram
Ascanbeseenfromthegraph,themaximumtorqueoccursinthesectionCAwithanabsolutevalueofBMnMIBMCMnMIIDMnMIIIBACDIIIIIIIIIIIIAMBMCMDM
8.5Torsionofthin-walledcylinders
Inordertostudythestressanddeformationduringtorsionofacircularshaft,thetorsionofathin-walledcylinderisfirstdiscussedtounderstandthelawofshearstressandshearstrainandtherelationshipbetweenthem.1.Stressinthin-walledcylindersduringtorsionInthefigureabove,athin-walledcylinderofequalthicknessisshown.Afterapplyinganexternalmomentatbothends,thefollowingphenomenacanbeobserved:
(1)Theshape,sizeandspacingofthecircumferentiallinesonthesurfaceofthecylinderremainunchanged,andjustrotaterelativelyaroundtheaxis.(2)Eachlongitudinallineisinclinedatthesameangleγ,andcanstillbeapproximatedasastraightline.
(3)Tinyrectangleformedbythelongitudinalandcircumferentiallinesbecomesaparallelogram.tRjg1Therearenonormalstressesineachcrosssectionofthecylindertwisted,onlytheshearingstressesperpendiculartotheradius.Theshearstressisthesameateverypointalongthecircumferenceofthecross-section.2Theshearstressesareuniformlydistributedalongthewallthicknessdirection.3ItsdirectioncoincideswiththesteeringofthetorqueMninthecrosssection.MnMnabcddxnMjgRRdqItfollowsfromstaticsthatsoor
whereistheareaenclosedbythemidlineofthecylinderwallonthecrosssection.RRdAdqt(e)Letlandbethelengthandtherelativeangleoftwistatbothendsofthethin-walledcylinderrespectively.Wecangetthereforetheshearstrainisproportionaltothetorsionangle.jgcabdgg2.PureshearShearforceEquilibriumconditioncouplemoment
Astheelementisinequilibrium,inthetopandbottomsurfaceoftheelement,theremustalsobeshearstressτ’
yxzdxtt¢dytTheaboveequationshowsthatshearstressmustexistinpairswithequalvaluesonthetwoplanesperpendiculartoeachotherintheelement.Theshearstressesarebothperpendiculartotheintersectionofthetwoplanes.Thedirectionisofpointingtoordeviatingfromthisintersectionconsistently.Thisrelationshipisknownasthetheoremofcomplementaryshearingstresses.Asshowninthefigureonthetop,bottom,leftandrightfoursidesoftheunitbodyonlyshearstressandnopositivestressexist,thestressstateofunitbodyiscalledpureshearstate.yxzdxtt¢dyt3.Hook'sLawinshear
Theτ-γcurveforlowcarbonsteelisshowninabovepictureHook'sLawinshear
WhereGisaconstantofproportionality,knownastheshearmodulusofelasticity.Itisanindicatoroftheabilityofamaterialtoresistsheardeformation.Becauseγisdimensionless,Ghasthesameunitastheτ.TheG-valueofthesteelisabout80GPa.gttg0
"Hooke'slawintensionandcompression","Hooke'slawinshear"and"theoremofcomplementaryshearingstresses"arethefundamentaltheoremsofmaterialmechanics.ThetensilemodulusofelasticityE,theshearmodulusofelasticityGandthePoisson'sratioμarethreeelasticconstantsofamaterial.Forisotropicelasticmaterials,thefollowingrelationshipsexistbetweenthem.
Onlytwoofthethreeelasticconstantsareindependent.4.Energyofsheardeformation
whentheshearstressdoesnotexceedtheshearproportionallimitofthematerial,theangleφoftwistisproportionaltotheexternaltorqueM.TheworkdonebytheexternalmomentisEnergyofsheardeformationU,
Strainenergyperunitvolumeisthestrainenergydensityu.ThevalueofushouldbeequaltotheshearstrainenergyUdividedbythevolumeofthethin-walledcylinder.SoAccordingtoHook'sLawinshear,wecanget
8.6Stressanddeformationduringtorsionofcircularshafts Trainofthought:Geometricrelation(planesectionhypothesis)RelationshipbetweenshearstrainandrelativeangleoftwistPhysicalrelation(Hook'sLaw)RelationshipbetweenshearstressandrelativeangleoftwistStaticrelation(Thecombinedmomentofshearstressontheshaft,i.e.thetorqueonthecrosssection)Relativeangleoftwistexpressionandshearstressexpression1.Stressduringtorsionofacircularshaft1.GeometricrelationAmicro-sectionoflengthdxisinterceptedfromthecircularshaftAsmallrelativemisalignmentoftheabsideTheanglechangeγoftheoriginalrectangleonthesurfaceofthecircularshaftisTheshearstraininthecross-sectionatadistanceρfromthecenterofthecircleis(a)jxeMeMmndxmn2.PhysicalrelationWhentheshearstressdoesnotexceedtheshearproportionallimitofthematerial,theshearstressisproportionaltotheshearstrain,thatis,obeyingtheshearHooke'slaw
(b)Substituteequation(a)intoequation(b)tofindtheshearstressatthedistanceρfromtheaxisas
(c)Theaboveformulashowsthattheshearstressτρa(bǔ)tanypointinthecrosssectionisproportionaltothedistanceρ.Theshearstressvariesalongtheradiusinalinearfashion,withzeroshearstressatthecentreofthecircleandthemaximumshearstressatpointsonthecircumferentialedge.
Accordingtothetheoremofcomplementaryshearingstresses,thedistributionofshearstressesalongtheradiusinthelongitudinalandtransversesectionsofthesolidcircularshaftisshownasfollows.rt3.Staticrelation
TakeamicroareadA,micro-shearforcesonthemicro-areadA:Correspondingmicro-momentstothecenterofthecircle:torque
(d)Substituteintoaboveequation,weget
dArtdAnMrOTheintegralintheaboveequationisaquantityrelatedtothegeometryanddimensionsofthecrosssection.Itiscalledthepolarmomentofinertiaofthecrosssection.(denotedas)
rtdAdAnMrOequation(d)canagainbewrittenasconsidering
weget
Thisistheformulaforcalculatingtheshearstressatanypointonthecrosssectionwhenthecircularshaftistwisted.
Accordingtoequation
Wecanknow,whenρ=R(i.e.ateachpointontheedgeofthecrosssection),theshearstresstakesitsmaximumvalue.
let,aboveequationcancanbewrittenas
WhereWniscalledthesectionmodulusoftorsion.4.TorsionaldeformationofcircularshaftThetorsionaldeformationofacircularshaftcanbeexpressedintermsoftherelativeangleoftwistoftwocrosssections.
Integratingbothsidesoftheaboveequationgivestherelativeangleoftwistofthetwosectionsseparatedbyl.
Foracircularshaftofequalcross-sectionmadeofthesamematerial(ItsGIPisaconstant),Ifthetorquebetweenthetwocrosssections(distancel)isalsoconstant,thetorsionanglebetweenthetwosections
is
Thisistheformulaforcalculatingthetorsionaldeformationofacircularshaftofequalcrosssection.
isknownasthetorsionalrigidity.
ThesignoftheangleoftwistisspecifiedinthesamewayasthatoftorqueMnanditsunitisradian(rad).
Ifthetorqueortorsionalrigiditybetweentwocrosssectionsisvariable,therelativetorsionalanglesofthetwosectionsshouldbecalculatedbyintegratingthetorsionalanglesofeachsectioninaccordancewithequationandthensummingthemalgebraically.5.Polarmomentsofinertiaandsectionmodulusoftorsion
annularmicroarea:polarmomentofinertiaofcircularsection:
drRDmaxtmaxtmaxtsectionmodulusoftorsion:
whereDisthediameterofthecircularsection.ThedimensionofIpisthefourthpowerofthelengthandthedimensionofWnisthethirdpowerofthelength.rOdrRDmaxtmaxtmaxtforthehollowcircularshaft,
WhereDanddaretheouterandinnerdiametersofthehollowcircularsection,respectively.rOdrRDmaxtmaxtmaxt6、ApplicationconditionsofstressanddeformationformuladuringtorsionTheabovestressanddeformationequationsarederivedbasedontherigidplanehypothesis.Theseformulasareonlyapplicabletoisotropiccircularbars.Whenthecircularcrosssectionchangesslowlyalongtheaxis,itcanalsobeapproximatedbytheaboveformulae.IpandWnarealsochangingalongtheaxisatthesametime.
Onlywhen,aboveequationsarecorrect.8.7Torsion
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 起重機(jī)設(shè)計課程設(shè)計
- 2025年度港口航道疏浚灰渣處理合同3篇
- 路面施工課程設(shè)計
- 該不該學(xué)構(gòu)圖課程設(shè)計
- 二零二五年度房屋出售合同范本(含房屋交易售后服務(wù)承諾)3篇
- 2025年度校園文化節(jié)贊助商權(quán)益分配合同3篇
- 2025年廣告業(yè)務(wù)員個人工作計劃范文(2篇)
- 某加油站油品跑冒漏事故應(yīng)急預(yù)案模版(2篇)
- 二零二五年度文化產(chǎn)業(yè)發(fā)展知識產(chǎn)權(quán)戰(zhàn)略合作協(xié)議2篇
- 2025年集郵進(jìn)校園活動業(yè)務(wù)校長講話稿(2篇)
- 初中英語2023年中考專題訓(xùn)練任務(wù)型閱讀-完成表格篇
- 全國各城市的50年一遇雪壓和風(fēng)壓
- 寧夏農(nóng)產(chǎn)品物流發(fā)展現(xiàn)狀的探究 物流管理專業(yè)
- 《青蛙賣泥塘》說課課件
- 人教版八年級數(shù)學(xué)下冊課件【全冊】
- 新概念英語第4冊課文(中英文對照)
- 七年級數(shù)學(xué)上冊專題18 一元一次方程有整數(shù)解(解析版)
- 梁山伯與祝英臺小提琴譜樂譜
- 酒店安全生產(chǎn)責(zé)任制
- 漢字文化解密學(xué)習(xí)通超星課后章節(jié)答案期末考試題庫2023年
- 福建地理概況課件
評論
0/150
提交評論