版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
精選高中數(shù)學(xué)說課稿模板合集七篇
精選高中數(shù)學(xué)說課稿模板合集七篇
作為一位兢兢業(yè)業(yè)的人民教師,通常需要用到說課稿來輔助教
學(xué),借助說課稿可以讓教學(xué)工作更科學(xué)化。說課稿應(yīng)該怎么寫才好
呢?以下是小編為大家整理的高中數(shù)學(xué)說課稿7篇,歡迎閱讀與收
藏。
高中數(shù)學(xué)說課稿篇1
一、教材分析
1.《指數(shù)函數(shù)》在教材中的地位、作用和特點(diǎn)
《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊(cè)第二章“函數(shù)”的
第六節(jié)內(nèi)容,是在學(xué)習(xí)了《指數(shù)》一節(jié)內(nèi)容之后編排的。通過本節(jié)課
的學(xué)習(xí),既可以對(duì)指數(shù)和函數(shù)的概念等知識(shí)進(jìn)一步鞏固和深化,又可
以為后面進(jìn)一步學(xué)習(xí)對(duì)數(shù)、對(duì)數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間
的關(guān)系來研究對(duì)數(shù)函數(shù)的性質(zhì)打下堅(jiān)實(shí)的概念和圖象基礎(chǔ),又因?yàn)?/p>
《指數(shù)函數(shù)》是進(jìn)入高中以后學(xué)生遇到的第一個(gè)系統(tǒng)研究的函數(shù),對(duì)
高中階段研究對(duì)數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識(shí),初步培養(yǎng)函數(shù)
的應(yīng)用意識(shí)打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅是本章《函
數(shù)》的重點(diǎn)內(nèi)容,也是高中學(xué)段的主要研究內(nèi)容之一,有著不可替代
的重要作用。
此外,《指數(shù)函數(shù)》的知識(shí)與我們的日常生產(chǎn)、生活和科學(xué)研究
有著緊密的聯(lián)系,尤其體現(xiàn)在細(xì)胞分裂、貸款利率的計(jì)算和考古中的
年代測算等方面,因此學(xué)習(xí)這部分知識(shí)還有著廣泛的現(xiàn)實(shí)意義。本節(jié)
內(nèi)容的特點(diǎn)之一是概念性強(qiáng),特點(diǎn)之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)
性質(zhì)時(shí)的重要作用。
2.教學(xué)目標(biāo)、重點(diǎn)和難點(diǎn)
通過初中學(xué)段的學(xué)習(xí)和高中對(duì)集合、函數(shù)等知識(shí)的系統(tǒng)學(xué)習(xí),學(xué)
生對(duì)函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個(gè)
方面:
知識(shí)維度:對(duì)正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等
最簡單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識(shí),能夠從初中運(yùn)動(dòng)變化的角
度認(rèn)識(shí)函數(shù)初步轉(zhuǎn)化到從集合與對(duì)應(yīng)的觀點(diǎn)來認(rèn)識(shí)函數(shù)。
技能維度:學(xué)生對(duì)采用“描點(diǎn)法”描繪函數(shù)圖象的方法已基本掌
握,能夠?yàn)檠芯俊吨笖?shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。
素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動(dòng)過程已有一定的體會(huì),已初
步了解了數(shù)形結(jié)合的思想。
鑒于對(duì)學(xué)生已有的知識(shí)基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》
的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點(diǎn)和難點(diǎn)如下:
(1)知識(shí)目標(biāo):
①掌握指數(shù)函數(shù)的概念;
②掌握指數(shù)函數(shù)的圖象和性質(zhì);
③能初步利用指數(shù)函數(shù)的概念解決實(shí)際問題;
(2)技能目標(biāo):
①滲透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法
②培養(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;
(3)情感目標(biāo):
①體驗(yàn)從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識(shí)事物之間的普遍聯(lián)系與相
互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點(diǎn)看問題②通過教學(xué)互動(dòng)促進(jìn)師生情
感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力
③領(lǐng)會(huì)數(shù)學(xué)科學(xué)的應(yīng)用價(jià)值。
(4)教學(xué)重點(diǎn):指數(shù)函數(shù)的圖象和性質(zhì)。
(5)教學(xué)難點(diǎn):指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。
突破難點(diǎn)的關(guān)鍵:尋找新知生長點(diǎn),建立新舊知識(shí)的聯(lián)系,在理
解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。
二、教法設(shè)計(jì)
由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計(jì)中,
我力圖通過這一節(jié)課的教學(xué)達(dá)到不僅使學(xué)生初步理解并能簡單應(yīng)用
指數(shù)函數(shù)的知識(shí),更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一
般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而達(dá)到培養(yǎng)學(xué)生
學(xué)習(xí)能力的目的,我根據(jù)自己對(duì)“誘思探究”教學(xué)模式和“情景式”
教學(xué)模式的認(rèn)識(shí),將二者結(jié)合起來,主要突出了幾個(gè)方面:
1.創(chuàng)設(shè)問題情景.按照指數(shù)函數(shù)的在生活中的實(shí)際背景給出兩個(gè)
實(shí)例,充分調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課
題,而這兩個(gè)例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0
小于1的圖象做好了準(zhǔn)備。
2.強(qiáng)化“指數(shù)函數(shù)”概念.引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納
出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點(diǎn),請(qǐng)學(xué)生思考
對(duì)于底數(shù)a是否需要限制,如不限制會(huì)有什么問題出現(xiàn),這樣避免了
學(xué)生對(duì)于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了
“分類討論”的鋪墊。
3.突出圖象的作用.在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借
助的重要輔助手段。一位數(shù)學(xué)家曾經(jīng)說過“數(shù)離形時(shí)少直觀,形離數(shù)
時(shí)難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時(shí),更是直接由圖象觀察得出
性質(zhì),因此圖象發(fā)揮了主要的作用。
4.注意數(shù)學(xué)與生活和實(shí)踐的聯(lián)系.數(shù)學(xué)的本質(zhì)是來源于生活,服
務(wù)于實(shí)踐。在課堂教學(xué)的引入、例題的講解和課外知識(shí)的拓展部分,
都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的
基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)。
三、學(xué)法指導(dǎo)
本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運(yùn)算后編排的,針對(duì)學(xué)生實(shí)
際情況,我主要在以下幾個(gè)方面做了嘗試:
1.再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個(gè)生活實(shí)例后,請(qǐng)學(xué)生回憶有關(guān)
指數(shù)的概念,幫助學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做
好準(zhǔn)備。
2.領(lǐng)會(huì)常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時(shí)會(huì)
遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會(huì)貫穿整
個(gè)高中的數(shù)學(xué)學(xué)習(xí)。
3.在互相交流和自主探究中獲得發(fā)展。在生活實(shí)例的課堂導(dǎo)入、
指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了
學(xué)生的討論、分組、交流等活動(dòng),讓學(xué)生變被動(dòng)的接受和記憶知識(shí)為
在合作學(xué)習(xí)的樂趣中主動(dòng)地建構(gòu)新知識(shí)的框架和體系,從而完成知識(shí)
的內(nèi)化過程。
4.注意學(xué)習(xí)過程的循序漸進(jìn)。在概念、圖象、性質(zhì)、應(yīng)用、拓展
的過程中按照先易后難的順序?qū)訉舆f進(jìn),讓學(xué)生感到有挑戰(zhàn)、有收獲,
跳一跳,夠得著,不同難度的題目設(shè)計(jì)將盡可能照顧到課堂學(xué)生的個(gè)
體差異。
四、程序設(shè)計(jì)
在設(shè)計(jì)本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生
去經(jīng)歷知識(shí)的形成與發(fā)展過程的原則,我設(shè)計(jì)了如下的教學(xué)程序,啟
發(fā)學(xué)生逐步發(fā)現(xiàn)和認(rèn)識(shí)指數(shù)函數(shù)的圖象和性質(zhì)。
1.創(chuàng)設(shè)情景、導(dǎo)入新課
教師活動(dòng):
①用電腦展示兩個(gè)實(shí)例,第一個(gè)是計(jì)算機(jī)價(jià)格下降問題,第二個(gè)
是生物中細(xì)胞分裂的例子,
②將學(xué)生按奇數(shù)列、偶數(shù)列分組。
學(xué)生活動(dòng):
①分別寫出計(jì)算機(jī)價(jià)格y與經(jīng)過月份x的關(guān)系式和細(xì)胞個(gè)數(shù)y與
分裂次數(shù)x的關(guān)系式,并互相交流;
②回憶指數(shù)的概念;
③歸納指數(shù)函數(shù)的概念;
④分析出對(duì)指數(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。
設(shè)計(jì)意圖:通過生活實(shí)例激發(fā)學(xué)生的學(xué)習(xí)動(dòng)機(jī),,掃清由概念不
清而造成的知識(shí)障礙,培養(yǎng)學(xué)生思維的主動(dòng)性,為突破難點(diǎn)做好準(zhǔn)備;
2.啟發(fā)誘導(dǎo)、探求新知
教師活動(dòng):
①給出兩個(gè)簡單的指數(shù)函數(shù)并要求學(xué)生畫它們的圖象②在準(zhǔn)備
好的小黑板上規(guī)范地畫出這兩個(gè)指數(shù)函數(shù)的圖象③板書指數(shù)函數(shù)的
性質(zhì)。
學(xué)生活動(dòng):
①畫出兩個(gè)簡單的指數(shù)函數(shù)圖象
②交流、討論
③歸納出研究函數(shù)性質(zhì)涉及的方面
④總結(jié)出指數(shù)函數(shù)的性質(zhì)。
設(shè)計(jì)意圖:讓學(xué)生動(dòng)手作簡單的指數(shù)函數(shù)的圖象對(duì)深刻理解本節(jié)
課的內(nèi)容有著一定的促進(jìn)作用,在學(xué)生完成基本作圖之后,教師再利
用課前已列表、建立坐標(biāo)系的小黑板展示準(zhǔn)確的作圖方法,達(dá)到進(jìn)一
步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”用多媒體將
指數(shù)函數(shù)的圖象推廣到一般情況,學(xué)生就會(huì)很自然的通過觀察圖象總
結(jié)出指數(shù)函數(shù)的性質(zhì),同時(shí)對(duì)于底數(shù)的討論也就變得順理成章。
3.鞏固新知、反饋回授
教師活動(dòng):
①板書例1
②板書例2第一問
③介紹有關(guān)考古的拓展知識(shí)。
高中數(shù)學(xué)說課稿篇2
一.說教材
1.1教材結(jié)構(gòu)與內(nèi)容簡析
本節(jié)課為《江蘇省中等職業(yè)學(xué)校試用教材數(shù)學(xué)(第二冊(cè))》5.6
函數(shù)圖象的定位作圖法的第一課時(shí),主要內(nèi)容為基本函數(shù)與一般函數(shù)
間的圖象平移變換規(guī)律。
函數(shù)圖象的平移,既是前階段函數(shù)性質(zhì)及具體函數(shù)研究的延續(xù)和
深化,也是后階段定位作圖法以至解析幾何中移軸化簡的基礎(chǔ)和滲
透,在教材中起著重要的承上啟下作用。更為重要的是,這段內(nèi)容還
蘊(yùn)涵著重要的數(shù)學(xué)思想方法,如化歸思想、映射與對(duì)應(yīng)思想、換元方
法等。
1.2教學(xué)目標(biāo)
1.2.1知識(shí)目標(biāo)
(D、給定平移前后函數(shù)解析式,能熟練敘述相應(yīng)的平移變換,正
確掌握平移方向與、符號(hào)的關(guān)系。
⑵、能較熟練地化簡較復(fù)雜的函數(shù)解析式,找出對(duì)應(yīng)的基本函數(shù)
模型(如一次函數(shù),反比例函數(shù)、指數(shù)函數(shù)等)。
⑶、初步學(xué)會(huì)應(yīng)用平移變換規(guī)律研究較復(fù)雜的函數(shù)的具體性質(zhì)
(如值域、單調(diào)性等)。
1.2.2能力目標(biāo)
(1)、在數(shù)學(xué)實(shí)驗(yàn)平臺(tái)上,能自主探究,改變相應(yīng)參數(shù)和函數(shù)解析
式,觀察相應(yīng)圖象變化,經(jīng)歷命題探索發(fā)現(xiàn)的過程,提高觀察、歸納、
概括能力。
(2)、結(jié)合學(xué)習(xí)中發(fā)現(xiàn)的問題,學(xué)會(huì)借助于數(shù)學(xué)軟件等工具研究、
探索和解決問題,學(xué)會(huì)數(shù)學(xué)
地解決問題。
(3)、滲透數(shù)學(xué)思想與方法(如化歸、映射的思想,換元的方法)
的學(xué)習(xí),發(fā)展學(xué)生的非邏輯思維能力(合情推理、直覺等)。
1.2.3情感目標(biāo)
培養(yǎng)學(xué)生積極參與、合作交流的主體意識(shí),在知識(shí)的探索和發(fā)現(xiàn)
的過程中,使學(xué)生感受數(shù)學(xué)學(xué)習(xí)的意義,改善學(xué)生的數(shù)學(xué)學(xué)習(xí)信念(態(tài)
度、興趣等)。
1.3教材重點(diǎn)和難點(diǎn)處理思路
重點(diǎn):函數(shù)圖象的平移變換規(guī)律及應(yīng)用
難點(diǎn):經(jīng)歷數(shù)學(xué)實(shí)驗(yàn)方法探索平移對(duì)函數(shù)解析式的影響及如何利
用平移變換規(guī)律化簡函數(shù)解析式、研究復(fù)雜函數(shù)
教材在這段內(nèi)容的處理上,注重直觀性背景,注重學(xué)生豐富感性
知識(shí)的獲得,淡化形式化的邏輯推導(dǎo)和形式化的結(jié)果即平移公式。實(shí)
際教學(xué)中,我們發(fā)現(xiàn)如果學(xué)生不經(jīng)受足夠的親身體驗(yàn)而簡單的記住結(jié)
論的話,往往很難在形式化的解析式與具體的圖象平移之間建立聯(lián)
系,并且移軸與移圖象之間也容易搞混,說明這段內(nèi)容不能采取簡單
的“告訴”方式,須讓學(xué)生自主發(fā)現(xiàn)命題、發(fā)現(xiàn)規(guī)律,讓他們“知其
然,更要知其所以然?!?/p>
為了突出重點(diǎn)、突破難點(diǎn),在教學(xué)中采取了以下策略:
(1)、從學(xué)生已有知識(shí)出發(fā),精心設(shè)計(jì)一些適合學(xué)生學(xué)力的數(shù)學(xué)實(shí)
驗(yàn)平臺(tái),分層次逐步引導(dǎo)學(xué)生觀察圖象的平移方向與函數(shù)解析式中、
符號(hào)的關(guān)系,抽象、歸納出平移變換規(guī)律。⑵、創(chuàng)設(shè)情境,引發(fā)學(xué)生
認(rèn)知沖突,激發(fā)學(xué)生求知欲,能借助于數(shù)學(xué)軟件多角度積極探求錯(cuò)誤
原因,使學(xué)生認(rèn)識(shí)到形如的函數(shù)須提取前的系數(shù)化為的形式,從而真
正認(rèn)識(shí)解析式形式化的特點(diǎn)。
(3)、數(shù)學(xué)實(shí)驗(yàn)采取小組合作研究共同完成簡單實(shí)驗(yàn)報(bào)告的形式,
通過學(xué)生的自主探究、合作交流,從而實(shí)現(xiàn)對(duì)平移變換規(guī)律知識(shí)的建
構(gòu)。
二.說教法
針對(duì)職高一年級(jí)學(xué)生的認(rèn)知特點(diǎn)和心理特征,在遵循啟發(fā)式教學(xué)
原則的基礎(chǔ)上,本節(jié)課我主要采取以實(shí)驗(yàn)發(fā)現(xiàn)法為主,以討論法、練
習(xí)法為輔的教學(xué)方法,引導(dǎo)學(xué)生通過實(shí)驗(yàn)手段,從直觀、想象到發(fā)現(xiàn)、
猜想,親歷數(shù)學(xué)知識(shí)建構(gòu)過程,體驗(yàn)數(shù)學(xué)發(fā)現(xiàn)的喜悅。
本節(jié)課的設(shè)計(jì)一方面重視學(xué)生數(shù)學(xué)學(xué)習(xí)過程是活動(dòng)的過程,因此
不是按照已形式化了的現(xiàn)成的數(shù)學(xué)規(guī)則去操作數(shù)學(xué),而是采取數(shù)學(xué)實(shí)
驗(yàn)的方式,使學(xué)生有機(jī)會(huì)經(jīng)受足夠的親身體驗(yàn),親歷知識(shí)的自主建構(gòu)
過程;使學(xué)生學(xué)會(huì)從具體情境中提取適當(dāng)?shù)母拍?,從觀察到的實(shí)例中
進(jìn)行概括,進(jìn)行合理的數(shù)學(xué)猜想與數(shù)學(xué)驗(yàn)證,并作更高層次的數(shù)學(xué)概
括與抽象;從而學(xué)會(huì)數(shù)學(xué)地思考。
另一方面,注重創(chuàng)設(shè)機(jī)會(huì)使學(xué)生有機(jī)會(huì)看到數(shù)學(xué)的全貌,體會(huì)數(shù)
學(xué)的全過程。整堂課的設(shè)計(jì)圍繞研究較復(fù)雜函數(shù)的性質(zhì)展開,以問題
“函數(shù)的性質(zhì)如何”為主線,既讓學(xué)生清楚研究函數(shù)圖象平移的必要
性,明確學(xué)習(xí)目標(biāo),又讓學(xué)生初步學(xué)會(huì)如何應(yīng)用規(guī)律解決問題,體會(huì)
知識(shí)的價(jià)值,增強(qiáng)求知欲。
總之,本節(jié)課采用數(shù)學(xué)實(shí)驗(yàn)發(fā)現(xiàn)教學(xué),學(xué)生采取小組合作的形式
自主探究;利用實(shí)物投影進(jìn)行集體交流,及時(shí)反饋相關(guān)信息。
三.說學(xué)法
“學(xué)之道在于悟,教之道在于度?!睂W(xué)生是學(xué)習(xí)的主體,教師在
教學(xué)過程中須將學(xué)習(xí)的主動(dòng)權(quán)交給學(xué)生。
美國某大學(xué)有一句名言:“讓我聽見的,我會(huì)忘記;讓我看見的,
我就領(lǐng)會(huì)了;讓我做過的,我就理解了?!蓖ㄟ^學(xué)生的自主實(shí)驗(yàn),在
探索新知的經(jīng)歷和獲得新知的體驗(yàn)的基礎(chǔ)之上,真正正確掌握平移方
向。
教師的“教”不僅要讓學(xué)生“學(xué)會(huì)知識(shí)”,更主要的是要讓學(xué)生
“會(huì)學(xué)知識(shí)”。正如荷蘭數(shù)學(xué)教育家弗賴登塔爾所指出,“數(shù)學(xué)知識(shí)
既不是教出來的,也不是學(xué)出來的,而是研究出來的。”本節(jié)課的教
學(xué)中創(chuàng)設(shè)利于學(xué)生發(fā)現(xiàn)數(shù)學(xué)的實(shí)驗(yàn)情境,讓學(xué)生自主地“做數(shù)學(xué)”,
將傳統(tǒng)意義下的“學(xué)習(xí)”數(shù)學(xué)改變?yōu)椤把芯俊睌?shù)學(xué)。從而,使傳授知
識(shí)與培養(yǎng)能力融為一體,在轉(zhuǎn)變學(xué)習(xí)方式的同時(shí)學(xué)會(huì)數(shù)學(xué)地思考。
四.說程序
4.1創(chuàng)設(shè)情境,引入課題
在簡要回顧前面研究的具體函數(shù)(指數(shù)函數(shù)、累函數(shù)、三角函數(shù)
等)性質(zhì)后,提出問題“如何研究的性質(zhì)?”
引導(dǎo)學(xué)生討論后,總結(jié)出兩種思路,即:思路1、通過描點(diǎn)法作
出函數(shù)的圖象,借助于圖象研究相關(guān)性質(zhì);思路2、將的性質(zhì)問題化
歸為的問題,借助于基本函數(shù)的性質(zhì)解決新問題。
從而自然地引出課題,關(guān)鍵是找出與的關(guān)系,尤其是圖象間的聯(lián)
系。更一般地,就是基本函數(shù)與間的聯(lián)系。
4.2數(shù)學(xué)實(shí)驗(yàn),自主探索
這一環(huán)節(jié)主要分兩階段。
1、嘗試初探
引例、函數(shù)與圖象間的關(guān)系
這一階段主要由教師講解,學(xué)生觀察發(fā)現(xiàn),意在突出兩函數(shù)圖象
形狀相同、位置不同,后者可以由前者平移得到。
講解時(shí),利用幾何畫板的度量功能,給出兩個(gè)對(duì)應(yīng)點(diǎn)的坐標(biāo),易
于學(xué)生發(fā)現(xiàn)點(diǎn)的坐標(biāo)關(guān)系,并給出相應(yīng)的輔助線,一方面便于學(xué)生發(fā)
現(xiàn)規(guī)律,另一方面也是為后面定位作圖法的學(xué)習(xí)作好鋪墊。
2、實(shí)驗(yàn)發(fā)現(xiàn)
本階段由學(xué)生以小組合作探索的形式完成,通過填寫實(shí)驗(yàn)報(bào)告的
形式完成探索規(guī)律的任務(wù)。實(shí)驗(yàn)1、試改變實(shí)驗(yàn)平臺(tái)1中的參數(shù)、,
觀察由的圖象到的變換現(xiàn)象,依照給出的樣例填寫下表,并總結(jié)其中
的平移變換規(guī)律。
函數(shù)解析式平移變換規(guī)律12向左平移2個(gè)單位,向上平移1個(gè)
單位實(shí)驗(yàn)結(jié)論
高中數(shù)學(xué)說課稿篇3
一、教材分析:
"數(shù)列"是中學(xué)數(shù)學(xué)的重要內(nèi)容之一。不僅在歷年的高考中占有一
定的比重,而且在實(shí)際生活中也經(jīng)常要用到數(shù)列的一些知識(shí)。例如:
儲(chǔ)蓄、分期付款中的有關(guān)計(jì)算就要用到數(shù)列知識(shí)。
就本節(jié)課而言,在給出數(shù)列的基本概念之后,結(jié)合例題,指出數(shù)
列可以看作定義域?yàn)檎麛?shù)集(或它的有限子集)的函數(shù)。因此,本
節(jié)課的內(nèi)容,一方面是前面函數(shù)知識(shí)的延伸及應(yīng)用,可以使學(xué)生加深
對(duì)函數(shù)概念的理解;另一方面也可以為后面學(xué)習(xí)等差數(shù)列、等比數(shù)列
的通項(xiàng)、求和等知識(shí)打下鋪墊。所以本節(jié)課在教材中起到了"承上啟
下”的作用,必須講清、講透。
二、教學(xué)目標(biāo):
根據(jù)上面對(duì)教材的分析,并結(jié)合學(xué)生的認(rèn)知水平和思維特點(diǎn),確
定本節(jié)課的教學(xué)目標(biāo)。
1、知識(shí)目標(biāo):
(1)形成并掌握數(shù)列及其有關(guān)概念,識(shí)記數(shù)列的表示和分類,
了解數(shù)列通項(xiàng)公式的意義。
(2)理解數(shù)列的通項(xiàng)公式,能根據(jù)數(shù)列的通項(xiàng)公式寫出數(shù)列的
任意一項(xiàng)。對(duì)比較簡單的數(shù)列,使學(xué)生能根據(jù)數(shù)列的前幾項(xiàng)觀察歸納
出數(shù)列的通項(xiàng)公式,并通過數(shù)列與函數(shù)的比較加深對(duì)數(shù)列的認(rèn)識(shí)。
2、能力目標(biāo):
培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等分析問題的能力,同時(shí)加深
理解數(shù)學(xué)知識(shí)之間相互滲透性的思想。
3、情感目標(biāo):
通過滲透函數(shù)、方程思想,培養(yǎng)學(xué)生的思維能力,使學(xué)生在民主、
和諧的活動(dòng)中感受學(xué)習(xí)的樂趣。通過介紹數(shù)列與函數(shù)間存在的特殊到
一般關(guān)系,向?qū)W生進(jìn)行辯證唯物主義思想教育。
三、重點(diǎn)、難點(diǎn):
1、教學(xué)重點(diǎn)
理解數(shù)列的概念及其通項(xiàng)公式,加強(qiáng)與函數(shù)的聯(lián)系,并能根據(jù)通
項(xiàng)公式寫出數(shù)列中的任意一項(xiàng)。
2、教學(xué)難點(diǎn)
根據(jù)數(shù)列前幾項(xiàng)的特點(diǎn),通過多角度、多層次的觀察和分析,歸
納出數(shù)列的通項(xiàng)公式。
四、教法學(xué)法
本節(jié)課以"問題情境一一歸納抽象一一鞏固訓(xùn)練”的模式展開,引
導(dǎo)學(xué)生從知識(shí)和生活經(jīng)驗(yàn)出發(fā),提出問題并與學(xué)生共同探索、討論解
決問題的方法,讓學(xué)生經(jīng)歷知識(shí)的形成過程,從而理解更加透徹。
現(xiàn)代教學(xué)觀明確指出:教師是主導(dǎo),學(xué)生是主體,學(xué)生應(yīng)成為學(xué)
習(xí)的主人。根據(jù)本節(jié)內(nèi)容及學(xué)生的認(rèn)知規(guī)律,針對(duì)不同內(nèi)容應(yīng)選擇不
同的方法。對(duì)于國際象棋棋盤麥粒采用電腦動(dòng)畫演示,增強(qiáng)感性認(rèn)識(shí);
所舉的引例及數(shù)列的函數(shù)定義,可采用探索發(fā)現(xiàn)法;對(duì)通項(xiàng)公式及數(shù)
列的分類等概念采用指導(dǎo)閱讀法;對(duì)于難題(根據(jù)數(shù)列的前幾項(xiàng)寫出
一個(gè)通項(xiàng)公式)采用講練結(jié)合法。
"授人以魚,不如授人以漁",平時(shí)在教學(xué)中教師應(yīng)不斷指導(dǎo)學(xué)生
學(xué)會(huì)學(xué)習(xí)。本節(jié)課從學(xué)生實(shí)際出發(fā),創(chuàng)設(shè)情境,引導(dǎo)學(xué)生觀察、分析,
探索發(fā)現(xiàn),歸納總結(jié),培養(yǎng)學(xué)生積極思維的品質(zhì),加強(qiáng)主動(dòng)學(xué)習(xí)的能
力。
為了有效地突出重點(diǎn),突破難點(diǎn),增大課堂容量,提高課堂效率,
本節(jié)課將常規(guī)教學(xué)手段與現(xiàn)代教學(xué)手段相結(jié)合,將引例、例題、練習(xí)
等實(shí)物投影。
五、教學(xué)過程
1、創(chuàng)設(shè)情景,激發(fā)興趣,引入新課
(1)電腦動(dòng)畫演示:國際象棋棋盤格子中放有麥粒的示意圖,
從而得到一組數(shù):1,2,22,23……263
敘述故事:給你一張報(bào)紙,你可以用它登上月球,你相信嗎?只
要不斷地將報(bào)紙對(duì)折42次以后,報(bào)紙的厚度就可以達(dá)到月球和地球
的距離。
設(shè)計(jì)意圖:以實(shí)例引入概念,再配以電腦動(dòng)畫,敘述小故事,增
強(qiáng)了感性認(rèn)識(shí),調(diào)動(dòng)學(xué)生學(xué)習(xí)新知識(shí)的積極性。
(2)投影演示,再觀察以下幾列數(shù):
①某班學(xué)生的學(xué)號(hào):1,2,3,4……,50
②從1984年到20xx年,中國體育健兒參加奧運(yùn)會(huì)每屆所得的金
牌數(shù):
15,5,16,16,28,32
③某次活動(dòng),在1km長的路段,從起點(diǎn)開始,每隔10m放置一個(gè)
垃圾筒,由近及遠(yuǎn)各筒與起點(diǎn)的距離排成一列數(shù):
0.10.20.30,……1000
④放射性物質(zhì)衰變,設(shè)原質(zhì)量為1,則各年的剩留量依次為:
1,0.84,0.842,0.843,……
2、歸納抽象,形成概念
(1)學(xué)生嘗試敘述數(shù)列的定義:啟發(fā)學(xué)生觀察上述幾組數(shù)據(jù)后,
進(jìn)行歸納總結(jié)定義:按一定次序排成的一列數(shù),叫數(shù)列,便于培養(yǎng)學(xué)
生的抽象概括能力。
舉例1:1,3,5,7與7,5,3,1這兩個(gè)數(shù)列有何區(qū)別?
舉例2:-1,1,-1,1,...是不是一個(gè)數(shù)列?
設(shè)計(jì)意圖:使學(xué)生注意把數(shù)列中的數(shù)和集合中的元素區(qū)分開來:
①數(shù)列中的數(shù)是有順序的,而集合中的元素是無序的。
②數(shù)列中的數(shù)可以重復(fù)出現(xiàn),而集中的元素不能重復(fù)出現(xiàn)。
進(jìn)一步加深學(xué)生對(duì)數(shù)列定義的理解。
(2)數(shù)列的項(xiàng)及項(xiàng)的表示方法:an
(3)數(shù)列的表示方法:可寫成:al,a2,a3,....,an...
或簡記為:{an},注意an與{an}的區(qū)別
上述(2)(3)采用指導(dǎo)閱讀法(書P106頁第7節(jié)~第8節(jié)第一
句話),對(duì)an與{an}的區(qū)別進(jìn)行集體討論歸納。
3、通項(xiàng)公式的探索
(1)觀察歸納定義
由學(xué)生觀察引例中數(shù)列的項(xiàng)與它在數(shù)列中的位置(即項(xiàng)的序號(hào))
間的關(guān)系:
實(shí)物投影:
序號(hào)123…64
Mil
項(xiàng)1=21-12=22-122=23-1……263
從而可看出項(xiàng)與項(xiàng)的序號(hào)之間可用一個(gè)公式:an=2nT表示,該
公式叫數(shù)列的通項(xiàng)公式,然后歸納抽象出數(shù)列的通項(xiàng)公式的定義
(略)。
(2)用函數(shù)觀點(diǎn)看待數(shù)列:這是一個(gè)難點(diǎn),講解必須清楚、透
徹。數(shù)列可看作是以自然數(shù)集或它的有限子集為定義域的函數(shù),當(dāng)自
變量由小到大依次取值時(shí)對(duì)應(yīng)的一列函數(shù)值(這是數(shù)列的本質(zhì)),其
圖象是一群孤立的點(diǎn),畫圖(棋盤麥粒這個(gè)數(shù)列)
設(shè)計(jì)意圖:加深對(duì)函數(shù)概念的理解。
(3)數(shù)列的分類,并口答引例及數(shù)列①②③④分別歸于哪類數(shù)
列。
4、講解例題
設(shè)計(jì)例題:①根據(jù)通項(xiàng)公式寫出前幾項(xiàng)并會(huì)判斷某個(gè)數(shù)是否為該
數(shù)列中的項(xiàng);②根據(jù)數(shù)列的前幾項(xiàng)寫出一個(gè)通項(xiàng)公式。
例1,根據(jù)下列數(shù)列{an}的通項(xiàng)公式,寫出它的前5項(xiàng)
(1)an=n/(n+1)(2)an=(-1)n,n
設(shè)計(jì)意圖:使學(xué)生正確掌握通項(xiàng)與序號(hào)的關(guān)系。
變式訓(xùn)練:問2589/2590是否為數(shù)列(1)中的項(xiàng)
設(shè)計(jì)意圖:使學(xué)生明確方程思想是解決數(shù)列問題的重要方法。
例2,寫出下列數(shù)列的一個(gè)通項(xiàng)公式,使它的前4項(xiàng)分別是下列
各數(shù):
(1)1,3,5,7
(2)2,-2,2,-2
(3)1,11,111,
設(shè)計(jì)意圖:引導(dǎo)學(xué)生進(jìn)行解題后反思,對(duì)完善學(xué)生的認(rèn)知結(jié)構(gòu)是
十分必要。寫通項(xiàng)公式時(shí),就是要去發(fā)現(xiàn)an與n的關(guān)系,對(duì)各項(xiàng)進(jìn)
行多角度、多層次觀察,找出這些項(xiàng)與相應(yīng)的項(xiàng)數(shù)(即序號(hào))之間的
對(duì)應(yīng)關(guān)系。(注:遇到分?jǐn)?shù),可分別觀察分子組的數(shù)列特征與分母組
成的數(shù)列特征;若為正負(fù)相間的項(xiàng),則可用T的奇次嘉或偶次累進(jìn)
行符號(hào)交換,有時(shí)也可根據(jù)相鄰的項(xiàng),適當(dāng)調(diào)整有關(guān)的表達(dá)式。)
5、練習(xí)鞏固
投影演示:
(1)寫出數(shù)列1,-1,……的一個(gè)通項(xiàng)公式
(2)是否所有數(shù)列都有通項(xiàng)公式?
上述(1)的設(shè)計(jì)意圖:an=(-1)n+1也可寫成(分段函數(shù)的形
式)(當(dāng)n為奇數(shù)時(shí),n為偶數(shù)時(shí)),說明根據(jù)數(shù)列的前幾項(xiàng)寫出的通
項(xiàng)公式可能不唯一。(2):引例②就沒有通項(xiàng)公式。通過這些練習(xí),
使學(xué)生能及時(shí)消化,及時(shí)鞏固所學(xué)內(nèi)容。
6、歸納小結(jié)
由學(xué)生試著總結(jié)本節(jié)課所學(xué)內(nèi)容,老師適當(dāng)補(bǔ)充,可以訓(xùn)練學(xué)生
的收斂思維,有助于完善學(xué)生的思維結(jié)構(gòu)。
(1)數(shù)列及有關(guān)概念。
(2)根據(jù)數(shù)列的通項(xiàng)公式求任意一項(xiàng),并能判斷某數(shù)是否為該
數(shù)列中的項(xiàng)。
(3)根據(jù)數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式。
(4)數(shù)列與函數(shù)的關(guān)系
7、課后作業(yè):
(1)課本P110/習(xí)題3.1/1(3)(4)(5);2、書P108/4(1)(3)
(4)
(2)復(fù)習(xí)看書P106-107
六、評(píng)價(jià)與分析
本節(jié)課,教師可通過創(chuàng)設(shè)情景,適時(shí)引導(dǎo)的方式來激發(fā)學(xué)生積極
思考的欲望,有時(shí)直接講解,有時(shí)組織掌握學(xué)生集體討論、探索發(fā)現(xiàn),
課堂上除反復(fù)強(qiáng)調(diào)注意點(diǎn)外,還應(yīng)通過課堂練習(xí)和課后作業(yè)來強(qiáng)化它
們。
通過本節(jié)課的學(xué)習(xí),學(xué)生不僅掌握了數(shù)列及有關(guān)概念,而且可體
會(huì)到數(shù)學(xué)概念形成過程中蘊(yùn)含的基本數(shù)學(xué)思想:"函數(shù)思想、數(shù)形結(jié)
合思想、特殊化思想",使之獲得內(nèi)心感受,提高了基本技能和解決問
題的能力,也可以逐漸學(xué)會(huì)辯證地看待問題。
高中數(shù)學(xué)說課稿篇4
一、教材分析:
《向量的加法》是《必修》4第二章第二單元中“平面向量的線
性運(yùn)算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角
形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時(shí)。向量的
加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意
義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾
何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個(gè)向量的和,在
空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及
“空間向量”中有很重要的地位。
二、學(xué)情分析:
學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量
等概念,知道向量可以自由移動(dòng),這是學(xué)習(xí)本節(jié)內(nèi)容的基礎(chǔ)。學(xué)生對(duì)
數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量
的加法,所以向量的加法可通過類比數(shù)的加法、以所學(xué)的物理模型為
背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握
兩個(gè)加法法則的特點(diǎn)。
三、教學(xué)目的:
1、通過對(duì)向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合
物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會(huì)向量加法的平行四邊形
法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個(gè)已知向量的和
向量。
2、在應(yīng)用活動(dòng)中,理解向量加法滿足交換律和結(jié)合律以及表述
兩個(gè)運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如
共線向量,共起點(diǎn)向量、共終點(diǎn)向量等。
3、通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)
方面的能力。
四、教學(xué)重、難點(diǎn)
重點(diǎn):向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課
的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,
實(shí)質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是
詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。
難點(diǎn):對(duì)三角形法則的理解;方向相反的兩個(gè)向量的加法。主要
是讓學(xué)生認(rèn)識(shí)到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是
表示向量的有向線段之間必須構(gòu)成三角形。
五、教學(xué)方法
本節(jié)采用以下教學(xué)方法:1、類比:由數(shù)的加法運(yùn)算類比向量的
加法運(yùn)算。2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)
用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法
則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、
結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。3、講解與練習(xí):對(duì)兩
個(gè)法則特點(diǎn)的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成
教材中的練習(xí)。4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,
相等向量的意義,更能說清兩個(gè)法則的幾何意義及運(yùn)算律。
六、數(shù)學(xué)思想的體現(xiàn):
1、分類的思想:總的來說本課中向量的加法分為不共線向量及
共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,
然后專門對(duì)零向量與任意向量相加作了規(guī)定,這樣對(duì)任意向量的加法
都做了討論,線索清楚。
2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對(duì)向量的加法
不致于太陌生,既有似曾相識(shí)的感覺,又能從對(duì)比中看出兩者的不同,
效果較好。
3、歸納思想:主要體現(xiàn)在以下三個(gè)環(huán)節(jié)①學(xué)完平行四邊形法則
和三角形法則后,歸納總結(jié),對(duì)不共線向量相加,兩個(gè)法則都可以選
用。②由共線向量的加法總結(jié)出三角形法則適用于任意兩個(gè)向量的相
加,而三角形法則僅適用于不共線向量相加。③對(duì)向量加法的結(jié)合律
和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個(gè)向量的加
法。歸納思想在這三個(gè)環(huán)節(jié)中的運(yùn)用,使得學(xué)生對(duì)兩個(gè)加法法則,尤
其是三角形法則的理解,步步深入。
七、教學(xué)過程:
1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對(duì)向量加法分共線與
不共線兩種情況,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這
些都是新課學(xué)習(xí)中必要的知識(shí)鋪墊。
2、引入新課:
(1)平行四邊形法則的引入。
學(xué)生在物理學(xué)中雖然接觸過位移的合成,但是并沒有形成三角形
法則的概念;而對(duì)平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定
由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)
是起點(diǎn)相同,但是物理中力的合成是在有相同的作用點(diǎn)的條件下合成
的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)
成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對(duì)相等向量的概念還沒有
深刻的認(rèn)識(shí),易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線段的起點(diǎn)必須
在一起才能用平行四邊形法則,不在一起不能用。這時(shí)要通過講解例
1,使學(xué)生認(rèn)識(shí)到可以通過平移向量,使表示兩個(gè)向量的有向線段有
共同的起點(diǎn)。這一點(diǎn)對(duì)理解及運(yùn)用法則求兩向量的和很重要。
設(shè)計(jì)意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識(shí)經(jīng)驗(yàn)為接入點(diǎn),
用學(xué)生熟知的方法來解決新的問題一一向量的加法,這樣新中有舊,
學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對(duì)向量加
法的平行四邊形法則的“起點(diǎn)相同”這一特點(diǎn)的認(rèn)識(shí),例1的講解使
學(xué)生認(rèn)識(shí)到當(dāng)表示向量的有向線段的起點(diǎn)不在一起時(shí),須把起點(diǎn)移到
一起,至此才能使學(xué)生完成對(duì)平行四邊形法則理解真正到位。
(2)三角形法則的引入。三角形法則沒有按照教材中利用位移
的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入
(如圖)。
所以這種把兩個(gè)向量相加的方法稱為三角形法則。接下來用幻燈
片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過程對(duì)學(xué)生也起
到了示例的作用。于是前面的例1還可以利用三角形法則來做。
這時(shí),總結(jié)出兩個(gè)不共線向量求和時(shí),平行四邊形法則與三角形
法則都可以用。
設(shè)計(jì)意圖:由平行四邊形法則的圖形引入三角形法則,可以很清
楚地使學(xué)生從向何意義上認(rèn)識(shí)到兩個(gè)法則之間的密切聯(lián)系,理解它們
的實(shí)質(zhì),而且銜接自然,能夠使學(xué)生對(duì)比地得出兩個(gè)法則的特點(diǎn)與實(shí)
質(zhì),并對(duì)兩個(gè)法則的特點(diǎn)有較深刻的印象。
(3)共線向量的加法
方向相同的兩個(gè)向量相加,對(duì)學(xué)生來說較易完成,”將它們接在
一起,取它們的方向及長度之和,作為和向量的方向與長度?!币龑?dǎo)
學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運(yùn)用了三角形法則:首尾相接,方向由
第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。
方向相反的兩個(gè)向量相加,對(duì)學(xué)生來說是個(gè)難點(diǎn),首先從作圖上
不知道怎樣做。但是學(xué)生學(xué)過有理數(shù)加法中的異號(hào)兩數(shù)相加:“異號(hào)
兩數(shù)相加,用較大
的絕對(duì)值減去較小的絕對(duì)值,符號(hào)取絕對(duì)值較大的數(shù)的符號(hào)?!?/p>
類比異號(hào)兩數(shù)相加,他們會(huì)用較長的模減去較短的模,方向取模較長
的向量的方向。具體做法由老師引導(dǎo)學(xué)生嘗試運(yùn)用三角形法則去做,
發(fā)現(xiàn)結(jié)論正確。
反思過程,學(xué)生自然會(huì)想到方向相同的兩個(gè)向量相加,類似于同
號(hào)兩數(shù)相加。這說明兩個(gè)共線向量相加依然可用三角形法則通過以上
幾個(gè)環(huán)節(jié)的討論,可以作個(gè)簡單的小結(jié):兩個(gè)不共線向量相加,可采
用平行四邊形法則或三角形法則,而兩個(gè)共線向量相加在本課所學(xué)方
法中只能用三角形法則,說明三角形法則適用于任意兩個(gè)向量相加。
設(shè)計(jì)意圖:通過對(duì)共線向量加法的探討,拓寬了學(xué)生對(duì)三角形法
則的認(rèn)識(shí),使得不同位置的向量相加都有了依據(jù),并且采用類比的方
法,使學(xué)生對(duì)共線向量的加法,尤其是方向相反的兩個(gè)向量的加法更
易于理解,可以化解難點(diǎn)。
(4)向量加法的運(yùn)算律
①交換律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角
形法則得出,理解起來沒什么困難,再一次強(qiáng)化了學(xué)生對(duì)兩個(gè)法
則特點(diǎn)及實(shí)質(zhì)的認(rèn)識(shí)。
②結(jié)合律:結(jié)合律是通過三個(gè)向量首尾相接,先加前兩個(gè)再與第
三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結(jié)果相
同。
接下來是對(duì)應(yīng)的兩個(gè)練習(xí),運(yùn)用交換律與結(jié)合律計(jì)算向量的和。
設(shè)計(jì)意圖:運(yùn)算律的引入給加法運(yùn)算帶來方便,從后面的練習(xí)中
學(xué)生能夠體會(huì)到這點(diǎn)。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個(gè)向量相加,同樣
可以運(yùn)用三角形法則:將所加向量首尾相接,和向量的方向是由第一
個(gè)向量的起點(diǎn)指向最后一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法
則適用于任意多個(gè)向量相加。
3、小結(jié)
先由學(xué)生小結(jié),檢查學(xué)生對(duì)本課重要知識(shí)的認(rèn)識(shí),也給學(xué)生一個(gè)
概括本節(jié)知識(shí)的機(jī)會(huì),然后用課件展示小結(jié)內(nèi)容,使學(xué)生印象更深。
(1)平行四邊形法則:起點(diǎn)相同,適用于不共線向量的求和。
(2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。
(3)運(yùn)算律
高中數(shù)學(xué)說課稿篇5
一、教材分析
1-教材的地位和作用
在學(xué)習(xí)這節(jié)課以前,我們已經(jīng)學(xué)習(xí)了振幅變換。本節(jié)知識(shí)是學(xué)習(xí)
函數(shù)圖象變換綜合應(yīng)用的基礎(chǔ),在教材地位上顯得十分重要。
y=asin(3x+@)圖象變換的學(xué)習(xí)有助于學(xué)生進(jìn)一步理解正弦函
數(shù)的圖象和性質(zhì),加深學(xué)生對(duì)函數(shù)圖象變換的理解和認(rèn)識(shí),加深數(shù)形
結(jié)合在數(shù)學(xué)學(xué)習(xí)中的應(yīng)用的認(rèn)識(shí)。同時(shí)為相關(guān)學(xué)科的學(xué)習(xí)打下扎實(shí)的
基礎(chǔ)。
2.教材的重點(diǎn)和難點(diǎn)
重點(diǎn)是對(duì)周期變換、相位變換規(guī)律的理解和應(yīng)用。
難點(diǎn)是對(duì)周期變換、相位變換先后順序的調(diào)整,對(duì)圖象變換的影
響。
3.教材內(nèi)容的安排和處理
函數(shù)y=asin(3x+6)圖象這部分內(nèi)容計(jì)劃用3課時(shí),本節(jié)是第2
課時(shí),主要學(xué)習(xí)周期變換和相位變換,以及兩種變換的綜合應(yīng)用。
二、目的分析
1.知識(shí)目標(biāo)
掌握相位變換、周期變換的變換規(guī)律。
2.能力目標(biāo)
培養(yǎng)學(xué)生的觀察能力、動(dòng)手能力、歸納能力、分析問題解決問題
能力。
3.德育目標(biāo)
在教學(xué)中努力培養(yǎng)學(xué)生的“由簡單到復(fù)雜、由特殊到一般”的辯
證思想,培養(yǎng)學(xué)生的探究能力和協(xié)作學(xué)習(xí)的能力。
4.情感目標(biāo)
通過學(xué)數(shù)學(xué),用數(shù)學(xué),進(jìn)而培養(yǎng)學(xué)生對(duì)數(shù)學(xué)的興趣。
三、教具使用
①本課安排在電腦室教學(xué),每個(gè)學(xué)生都擁有一臺(tái)計(jì)算機(jī),所有的
計(jì)算機(jī)由一套多媒體演示控制系統(tǒng)連接,以實(shí)現(xiàn)師生、生生的相互溝
通。
②課前應(yīng)先把本課所需要的幾何畫板課件通過多媒體演示系統(tǒng)
發(fā)送到每一臺(tái)學(xué)生電腦。
四、教法、學(xué)法分析
本節(jié)課以“探究一一歸納一一應(yīng)用”為主線,通過設(shè)置問題情
境,引導(dǎo)學(xué)生自主探究,總結(jié)規(guī)律,并能應(yīng)用規(guī)律分析問題、解決問
題。
以學(xué)生的自主探究為主要方式,把計(jì)算機(jī)使用的主動(dòng)權(quán)交給學(xué)
生,讓學(xué)生主動(dòng)去學(xué)習(xí)新知、探究未知,在活動(dòng)中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)
學(xué),并能數(shù)學(xué)地提出問題、解決問題。
五、教學(xué)過程
教學(xué)過程設(shè)計(jì):
預(yù)備知識(shí)
一、問題探究
⑴師生合作探究周期變換
⑵學(xué)生自主探究相位變換
二、歸納概括
三、實(shí)踐應(yīng)用
教學(xué)程序
設(shè)計(jì)說明
K預(yù)備知識(shí)
1我們已經(jīng)學(xué)習(xí)了幾種圖象變換?
2這些變換的規(guī)律是什么?
幫助學(xué)生鞏固、理解和歸納基礎(chǔ)知識(shí),為后面的學(xué)習(xí)作鋪墊。促
使學(xué)生學(xué)會(huì)對(duì)知識(shí)的歸納梳理。
K問題探究
(一)師生合作探究周期變換
(1)自己動(dòng)手,在幾何畫板中分別觀察
(Dy=sinx^y=sin2x;(2)y=sinx->y=sin
x圖象的變換過程,指出變換過程中圖象上每一個(gè)點(diǎn)的坐標(biāo)發(fā)生
了什么變化。
(2)在上述變換過程中,橫坐標(biāo)的伸長和縮短與3之間存在怎樣
的關(guān)系?
(二)學(xué)生自主探究相位變換
(1)我們初中學(xué)過的由y=f(x)-y=f(x+a)的圖象變換規(guī)律是怎樣
的?
⑵令f(x)=sinx,則f(x+6)=sin(x+6),那么
y=sinxfy=sin(x+6)的變換是不是也符合上述規(guī)律呢?請(qǐng)動(dòng)手用幾
何畫板加以驗(yàn)證。
設(shè)計(jì)這個(gè)問題的主要用意是讓學(xué)生通過觀察圖象變換的過程,了
解周期變換的基本規(guī)律。
設(shè)計(jì)這個(gè)問題意圖是引導(dǎo)學(xué)生再次認(rèn)真觀察圖象變換的過程,以
便總結(jié)周期變換的規(guī)律。
師生合作探究已經(jīng)讓學(xué)生掌握了探究圖象變換的基本方法,在此
基礎(chǔ)上,由學(xué)生自主探究相位變換規(guī)律,提高學(xué)生的綜合能力。
K歸納概括
通過以上探究,你能否總結(jié)出周期變換和相位變換的一般規(guī)律?
設(shè)計(jì)這個(gè)環(huán)節(jié)的意圖是通過對(duì)上述變換過程的探究,進(jìn)而引導(dǎo)學(xué)
生歸納概括,從現(xiàn)象到本質(zhì),總結(jié)出周期變換和相位變換的一般規(guī)律。
K實(shí)踐應(yīng)用
(一)應(yīng)用舉例
(1)用五點(diǎn)法作出y=sin(2x+)一個(gè)周期內(nèi)的簡圖。
(2)我們可以通過哪些方法完成y=sinx到y(tǒng)=sin(2x+)的圖象變
換
(3)請(qǐng)動(dòng)手驗(yàn)證上述方法,把幾何畫板所得圖象與用五點(diǎn)法作出
的簡圖作比較,觀察哪些方法是正確的,哪些方法是錯(cuò)誤的。
(4)歸納總結(jié)
從上述的變換過程中,我們知道若f(x)=sin2x,則
f()=sin(2x+),由f(x)ff(x+a)的變換規(guī)律得從
y=sin2xfy=sin(2x+)的變換應(yīng)該是.
(二)分層訓(xùn)練
a組題(基礎(chǔ)題)
如何完成下列圖象的變換:
(Dy=sin3x^y=sin(3x+l)
②y=sin(x+l)fy=sin(3x+l)
b組題(中等題)
如何完成下列圖象的變換:
(Dy=sin3x^y=sin(3x+l)
②y=sin(x+1)fy=sin(3x+l)
(3)y=sinx^y=sin(3x+l)
c組題(拓展題)
①如何完成下列圖象的變換:
y=sinxfy=sin(3x+l)
②我們知道,從f(x)到f(x)+k的變換可通過圖象的上下平移
(k>0上移)(k
讓學(xué)生用五點(diǎn)法作出這個(gè)圖象是為了驗(yàn)證變換方法是否正確。
給出這個(gè)問題的用意是開拓學(xué)生的思維,讓學(xué)生從多角度思考問
題。
這個(gè)步驟主要目的是培養(yǎng)學(xué)生的探究能力和動(dòng)手能力。
這個(gè)問題的解決,是突破本課難點(diǎn)的關(guān)鍵。通過問題的解決,讓
學(xué)生理解如果先進(jìn)行周期變換,而后進(jìn)行相位變換,應(yīng)特別關(guān)注x的
變化量。
a組題重在基礎(chǔ)知識(shí)的掌握,
由基礎(chǔ)較薄弱的同學(xué)完成。
b組比a組增加了第③小題,
重在對(duì)兩種變換的綜合應(yīng)用。
c組除了考查知識(shí)的綜合應(yīng)用,
還要求學(xué)生對(duì)新問題進(jìn)行探究,
有較大難度,適合基礎(chǔ)較好的
同學(xué)完成。
作業(yè):
(1)必做題
(2)選做題
作業(yè)分為兩種形式,體現(xiàn)作業(yè)的鞏固性和發(fā)展性原則。選做題不
作統(tǒng)一要求,供學(xué)有余力的學(xué)生課后研究。
六、評(píng)價(jià)分析
在本節(jié)的教與學(xué)活動(dòng)中,始終體現(xiàn)以學(xué)生的發(fā)展為本的教育理
念。在學(xué)生已有的認(rèn)知基礎(chǔ)上進(jìn)行設(shè)問和引導(dǎo),關(guān)注學(xué)生的認(rèn)知過程,
注意學(xué)生的品德、思維和心理等方面的發(fā)展。重視動(dòng)手能力的培養(yǎng),
重視問題探究意識(shí)和能力的培養(yǎng)。同時(shí),考慮不同學(xué)生的個(gè)性差異和
發(fā)展層次,使不同的學(xué)生得到不同的發(fā)展,體現(xiàn)因材施教原則。
調(diào)節(jié)與反饋:
⑴驗(yàn)證兩種變換的綜合時(shí),可能會(huì)出現(xiàn)有些學(xué)生無法觀察到兩種
變換的區(qū)別這種情況,此時(shí),教師除了加以引導(dǎo)外,還需通過教師演
示和詳細(xì)講解加以解決。
⑵教學(xué)中可能出現(xiàn)個(gè)別學(xué)生無法正確操作課件的情況,這種情況
下一定要強(qiáng)調(diào)學(xué)生的協(xié)作意識(shí)。
附:板書設(shè)計(jì)
高中數(shù)學(xué)說課稿篇6
教學(xué)背景分析
lo教材結(jié)構(gòu)分析
《圓的方程》安排在高中數(shù)學(xué)第二冊(cè)(上)第七章第六節(jié)。圓作
為常見的簡單幾何圖形,在實(shí)際生活和生產(chǎn)實(shí)踐中有著廣泛的應(yīng)用。
圓的方程屬于解析幾何學(xué)的基礎(chǔ)知識(shí),是研究二次曲線的開始,對(duì)后
續(xù)直線與圓的位置關(guān)系、圓錐曲線等內(nèi)容的學(xué)習(xí),無論在知識(shí)上還是
方法上都有著積極的意義,所以本節(jié)內(nèi)容在整個(gè)解析幾何中起著承前
啟后的作用。
20學(xué)情分析
圓的方程是學(xué)生在初中學(xué)習(xí)了圓的概念和基本性質(zhì)后,又掌握了
求曲線方程的一般方法的基礎(chǔ)上進(jìn)行研究的。但由于學(xué)生學(xué)習(xí)解析幾
何的時(shí)間還不長、學(xué)習(xí)程度較淺,且對(duì)坐標(biāo)法的運(yùn)用還不夠熟練,在
學(xué)習(xí)過程中難免會(huì)出現(xiàn)困難。另外學(xué)生在探究問題的能力,合作交流
的意識(shí)等方面有待加強(qiáng)。
根據(jù)上述教材結(jié)構(gòu)與內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)和心
理特征,我制定如下教學(xué)目標(biāo):
3o教學(xué)目標(biāo)
(1)知識(shí)目標(biāo):①掌握?qǐng)A的標(biāo)準(zhǔn)方程;
②會(huì)由圓的標(biāo)準(zhǔn)方程寫出圓的半徑和圓心坐標(biāo),能根據(jù)條件寫出
圓的標(biāo)準(zhǔn)方程;
③利用圓的標(biāo)準(zhǔn)方程解決簡單的實(shí)際問題。
(2)能力目標(biāo):①進(jìn)一步培養(yǎng)學(xué)生用代數(shù)方法研究幾何問題的
能力;
②加深對(duì)數(shù)形結(jié)合思想的理解和加強(qiáng)對(duì)待定系數(shù)法的運(yùn)用;
③增強(qiáng)學(xué)生用數(shù)學(xué)的意識(shí)。
(3)情感目標(biāo):①培養(yǎng)學(xué)生主動(dòng)探究知識(shí)、合作交流的意識(shí);
②在體驗(yàn)數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣。
根據(jù)以上對(duì)教材、教學(xué)目標(biāo)及學(xué)情的分析,我確定如下的‘教學(xué)
重點(diǎn)和難點(diǎn):
40教學(xué)重點(diǎn)與難點(diǎn)
(1)重點(diǎn):圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用。
(2)難點(diǎn):①會(huì)根據(jù)不同的已知條件求圓的標(biāo)準(zhǔn)方程;
②選擇恰當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實(shí)際問題。
為使學(xué)生能達(dá)到本節(jié)設(shè)定的教學(xué)目標(biāo),我再從教法和學(xué)法上進(jìn)行
分析:
好學(xué)教育:
教法學(xué)法分析
lo教法分析為了充分調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性,本節(jié)課采用“啟
發(fā)式”問題教學(xué)法,用環(huán)環(huán)相扣的問題將探究活動(dòng)層層深入,使教師
總是站在學(xué)生思維的最近發(fā)展區(qū)上。另外我恰當(dāng)?shù)睦枚嗝襟w課件進(jìn)
行輔助教學(xué),借助信息技術(shù)創(chuàng)設(shè)實(shí)際問題的情境既能激發(fā)學(xué)生的學(xué)習(xí)
興趣,又直觀的引導(dǎo)了學(xué)生建模的過程。
20學(xué)法分析通過推導(dǎo)圓的標(biāo)準(zhǔn)方程,加深對(duì)用坐標(biāo)法求軌跡方
程的理解。通過求圓的標(biāo)準(zhǔn)方程,理解必須具備三個(gè)獨(dú)立的條件才可
以確定一個(gè)圓。通過應(yīng)用圓的標(biāo)準(zhǔn)方程,熟悉用待定系數(shù)法求的過程。
下面我就對(duì)具體的教學(xué)過程和設(shè)計(jì)加以說明:
教學(xué)過程與設(shè)計(jì)
整個(gè)教學(xué)過程是由七個(gè)問題組成的問題鏈驅(qū)動(dòng)的,共分為五個(gè)環(huán)
節(jié):
創(chuàng)設(shè)情境啟迪思維深入探究獲得新知應(yīng)用舉例鞏固提高
反饋訓(xùn)練形成方法小結(jié)反思拓展引申
下面我從縱橫兩方面敘述我的教學(xué)程序與設(shè)計(jì)意圖。
首先:縱向敘述教學(xué)過程
(一)創(chuàng)設(shè)情境一一啟迪思維
問題一已知隧道的截面是半徑為4m的半圓,車輛只能在道路中
心線一側(cè)行駛,一輛寬為2。7m,高為3m的貨車能不能駛?cè)脒@個(gè)隧
道?
通過對(duì)這個(gè)實(shí)際問題的探究,把學(xué)生的思維由用勾股定理求線段
CD的長度轉(zhuǎn)移為用曲線的方程來解決。一方面幫助學(xué)生回顧了舊知
——求軌跡方程的一般方法,另一方面,在得到汽車不能通過的結(jié)論
的同時(shí)學(xué)生自己推導(dǎo)出了圓心在原點(diǎn),半徑為4的圓的標(biāo)準(zhǔn)方程,從
而很自然的進(jìn)入了本課的主題。用實(shí)際問題創(chuàng)設(shè)問題情境,讓學(xué)生感
受到問題來源于實(shí)際,應(yīng)用于實(shí)際,激發(fā)了學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)欲
望。這樣獲取的知識(shí),不但易于保持,而且易于遷移。
通過對(duì)問題一的探究,抓住了學(xué)生的注意力,把學(xué)生的思維引到
用坐標(biāo)法研究圓的方程上來,此時(shí)再把問題深入,進(jìn)入第二環(huán)節(jié)。
(二)深入探究一一獲得新知
問題二1。根據(jù)問題一的探究能不能得到圓心在原點(diǎn),半徑為的
圓的方程?
2o如果圓心在,半徑為時(shí)又如何呢?
好學(xué)教育:
這一環(huán)節(jié)我首先讓學(xué)生對(duì)問題一進(jìn)行歸納,得到圓心在原點(diǎn),半
徑為4的圓的標(biāo)準(zhǔn)方程后,引導(dǎo)學(xué)生歸納出圓心在原點(diǎn),半徑為r的
圓的標(biāo)準(zhǔn)方程。然后再讓學(xué)生對(duì)圓心不在原點(diǎn)的情況進(jìn)行探究。我預(yù)
設(shè)了三種方法等待著學(xué)生的探究結(jié)果,分別是:坐標(biāo)法、圖形變換法、
向量平移法。
得到圓的標(biāo)準(zhǔn)方程后,我設(shè)計(jì)了由淺入深的三個(gè)應(yīng)用平臺(tái),進(jìn)入
第三環(huán)節(jié)。
(三)應(yīng)用舉例一一鞏固提高
Io直接應(yīng)用內(nèi)化新知
問題三1。寫出下列各圓的標(biāo)準(zhǔn)方程:
(1)圓心在原點(diǎn),半徑為3;
(2)經(jīng)過點(diǎn),圓心在點(diǎn)。
2o寫出圓的圓心坐標(biāo)和半徑。
我設(shè)計(jì)了兩個(gè)小問題,第一題是直接或間接的給出圓心坐標(biāo)和半
徑求圓的標(biāo)準(zhǔn)方程,第二題是給出圓的標(biāo)準(zhǔn)方程求圓心坐標(biāo)和半徑,
這兩題比較簡單,可以安排學(xué)生口答完成,目的是先讓學(xué)生熟練掌握
圓心坐標(biāo)、半徑與圓的標(biāo)準(zhǔn)方程之間的關(guān)系,為后面探究圓的切線問
題作準(zhǔn)備。
Ho靈活應(yīng)用提升能力
問題四1。求以點(diǎn)為圓心,并且和直線相切的圓的方程。
2o求過點(diǎn),圓心在直線上且與軸相切的圓的方程。
30已知圓的方程為,求過圓上一點(diǎn)的切線方程。
你能歸納出具有一般性的結(jié)論嗎?
已知圓的方程是,經(jīng)過圓上一點(diǎn)的切線的方程是什么?
我設(shè)計(jì)了三個(gè)小問題,第一個(gè)小題有了剛剛解決問題三的基礎(chǔ),
學(xué)生會(huì)很快求出半徑,根據(jù)圓心坐標(biāo)寫出圓的標(biāo)準(zhǔn)方程。第二個(gè)小題
有些困難,需要引導(dǎo)學(xué)生應(yīng)用待定系數(shù)法確定圓心坐標(biāo)和半徑再求
解,從而理解必須具備三個(gè)獨(dú)立的條件才可以確定一個(gè)圓。第三個(gè)小
題解決方法較多,我預(yù)設(shè)了四種方法再一次為學(xué)生的發(fā)散思維創(chuàng)設(shè)了
空間。最后我讓學(xué)生由第三小題的結(jié)論進(jìn)行歸納、猜想,在論證經(jīng)過
圓上一點(diǎn)圓的切線方程的過程中,又一次模擬了真理發(fā)現(xiàn)的過程,使
探究氣氛達(dá)到高潮。
IIIo實(shí)際應(yīng)用回歸自然
問題五如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度
AB=20m,拱高0P=4m,在建造時(shí)每隔4m需用一個(gè)支柱支撐,求支柱
的長度(精確到Oo01m)o
好學(xué)教育:
我選用了教材的例3,它是待定系數(shù)法求出圓的三個(gè)參數(shù)的又一
次應(yīng)用,同時(shí)也與引例相呼應(yīng),使學(xué)生形成解決實(shí)際問題的一般方法,
培養(yǎng)了學(xué)生建模的習(xí)慣和用數(shù)學(xué)的意識(shí)。
(四)反饋訓(xùn)練一一形成方法
問題六1。求過原點(diǎn)和點(diǎn),且圓心在直線上的圓的標(biāo)準(zhǔn)方程。
2o求圓過點(diǎn)的切線方程。
30求圓過點(diǎn)的切線方程。
接下來是第四環(huán)節(jié)一一反饋訓(xùn)練。這一環(huán)節(jié)中,我設(shè)計(jì)三個(gè)小題
作為鞏固性訓(xùn)練,給學(xué)生一塊“用武”之地,讓每一位同學(xué)體驗(yàn)學(xué)習(xí)
數(shù)學(xué)的樂趣,成功的喜悅,找到自信,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的愿望與信心。
另外第3題是我特意安排的一道求過圓外一點(diǎn)的圓的切線方程,由于
學(xué)生剛剛歸納了過圓上一點(diǎn)圓的切線方程,因此很容易產(chǎn)生思維的負(fù)
遷移,另外這道題目有兩解,學(xué)生容易漏掉斜率不存在的情況,這時(shí)
引導(dǎo)學(xué)生用數(shù)形結(jié)合的思想,結(jié)合初中已有的圓的知識(shí)進(jìn)行判斷,這
樣的設(shè)計(jì)對(duì)培養(yǎng)學(xué)生思維的嚴(yán)謹(jǐn)性具有良好的效果。
(五)小結(jié)反思一一拓展引申
lo課堂小結(jié)
把圓的標(biāo)準(zhǔn)方程與過圓上一點(diǎn)圓的切線方程加以小結(jié),提煉數(shù)形
結(jié)合的思想和待定系數(shù)的方法①圓心為,半徑為r的圓的標(biāo)準(zhǔn)方程
為:
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 太空垃圾監(jiān)測與防范-洞察分析
- 藥物副作用機(jī)制研究-洞察分析
- 網(wǎng)絡(luò)視覺文化的性別表達(dá)研究-洞察分析
- 土地利用分類技術(shù)-洞察分析
- 冬季防火精彩講話稿(10篇)
- 太陽能技術(shù)工作總結(jié)
- 《會(huì)計(jì)基礎(chǔ)講解》課件
- 辦公效率提升以設(shè)計(jì)思維解決實(shí)際問題
- 辦公環(huán)境下的德育教育案例分享
- 《電信詐騙小知識(shí)》課件
- 首都經(jīng)濟(jì)貿(mào)易大學(xué)《微積分》2021-2022學(xué)年第一學(xué)期期末試卷
- 鑄牢中華民族共同體意識(shí)-形考任務(wù)1-國開(NMG)-參考資料
- 玻璃電熔爐設(shè)計(jì)
- 冷卻塔使用說明書(荏原)
- 江蘇省連云港市各縣區(qū)鄉(xiāng)鎮(zhèn)行政村村莊村名居民村民委員會(huì)明細(xì)
- 引上管的設(shè)計(jì)及安裝要求
- 一年級(jí)美術(shù)(上冊(cè))課件-《認(rèn)識(shí)美術(shù)工具》教學(xué)課件
- GB∕T 32218-2015 真空技術(shù) 真空系統(tǒng)漏率測試方法
- 醫(yī)院建筑設(shè)計(jì)重點(diǎn)、難點(diǎn)分析及應(yīng)對(duì)措施
- 大壩樞紐工程截流施工方案
- 風(fēng)冷螺桿熱泵機(jī)組招標(biāo)技術(shù)要求
評(píng)論
0/150
提交評(píng)論