版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
陜西省漢中學(xué)市鎮(zhèn)巴縣2025屆九年級數(shù)學(xué)第一學(xué)期期末檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.如圖,在中,,且DE分別交AB,AC于點D,E,若,則△和△的面積之比等于()A. B. C. D.2.二次函數(shù)的圖象如圖所示,則一次函數(shù)與反比例函數(shù)在同一坐標(biāo)系內(nèi)的圖象大致為()A. B. C. D.3.如圖,由一些完全相同的小正方體搭成的幾何體的左視圖和俯視圖,則這個幾何體的主視圖不可能是()A. B. C. D.4.在三角形紙片ABC中,AB=8,BC=4,AC=6,按下列方法沿虛線剪下,能使陰影部分的三角形與△ABC相似的是()A. B. C. D.5.把兩條寬度都為的紙條交叉重疊放在一起,且它們的交角為,則它們重疊部分(圖中陰影部分)的面積為().A. B.C. D.6.已知是的反比例函數(shù),下表給出了與的一些值,表中“▲”處的數(shù)為()▲A. B. C. D.7.如圖,已知AB∥CD∥EF,它們依次交直線l1、l2于點A、D、F和點B、C、E,如果AD:DF=3:1,BE=10,那么CE等于()A. B. C. D.8.已知Rt△ABC中,∠C=90o,AC=4,BC=6,那么下列各式中,正確的是()A.sinA= B.cosA= C.tanA= D.tanB=9.如圖,菱形的對角線,相交于點,過點作于點,連接,若,,則的長為()A.3 B.4 C.5 D.610.二次函數(shù)(b>0)與反比例函數(shù)在同一坐標(biāo)系中的圖象可能是()A. B. C. D.二、填空題(每小題3分,共24分)11.已知兩圓內(nèi)切,半徑分別為2厘米和5厘米,那么這兩圓的圓心距等于_____厘米.12.在平面直角坐標(biāo)系中,反比例函數(shù)的圖象經(jīng)過點,,則的值是__________.13.已知關(guān)于x的一元二次方程x2+mx+n=0的兩個實數(shù)根分別為x1=-1,x2=2,則二次函數(shù)y=x2+mx+n中,當(dāng)y<0時,x的取值范圍是________;14.如圖,在小孔成像問題中,小孔O到物體AB的距離是60cm,小孔O到像CD的距離是30cm,若物體AB的長為16cm,則像CD的長是_____cm.15.如圖,∠MON=90°,直角三角形ABC斜邊的端點A,B別在射線OM,ON上滑動,BC=1,∠BAC=30°,連接OC.當(dāng)AB平分OC時,OC的長為______.16.如圖,已知⊙O的半徑為1,AB,AC是⊙O的兩條弦,且AB=AC,延長BO交AC于點D,連接OA,OC,若AD2=AB?DC,則OD=__.17.已知,則___________.18.若一個圓錐的側(cè)面展開圖是一個半徑為3cm,圓心角為120°的扇形,則該圓錐的底面半徑為__________cm.三、解答題(共66分)19.(10分)如圖,在一筆直的海岸線上有A,B兩觀景臺,A在B的正東方向,BP=5(單位:km),有一艘小船停在點P處,從A測得小船在北偏西60°的方向,從B測得小船在北偏東45°的方向.(1)求A、B兩觀景臺之間的距離;(2)小船從點P處沿射線AP的方向進行沿途考察,求觀景臺B到射線AP的最短距離.(結(jié)果保留根號)20.(6分)如圖,中,,點是延長線上一點,平面上一點,連接平分.(1)若,求的度數(shù);(2)若,求證:21.(6分)已知:AB是⊙O的直徑,BD是⊙O的弦,延長BD到點C,使AB=AC,連接AC,過點D作DE⊥AC,垂足為E.(1)求證:DC=BD;(2)求證:DE為⊙O的切線;(3)若AB=12,AD=6,連接OD,求扇形BOD的面積.22.(8分)在推進城鄉(xiāng)生活垃圾分類的行動中,某校數(shù)學(xué)興趣小組為了了解居民掌握垃圾分類知識的情況,對兩小區(qū)各600名居民進行測試,從中各隨機抽取50名居民成績進行整理得到部分信息:(信息一)小區(qū)50名居民成績的頻數(shù)直方圖如圖(每一組含前一個邊界值,不含后一個邊界值);(信息二)上圖中,從左往右第四組成績?nèi)缦拢?5777779797980808182828383848484(信息三)兩小區(qū)各50名居民成績的平均數(shù)、中位數(shù)、眾數(shù)、優(yōu)秀率(80分及以上為優(yōu)秀)、方差等數(shù)據(jù)如下(部分空缺):小區(qū)平均數(shù)中位數(shù)眾數(shù)優(yōu)秀率方差75.1___________7940%27775.1777645%211根據(jù)以上信息,回答下列問題:(1)求小區(qū)50名居民成績的中位數(shù);(2)請估計小區(qū)600名居民成績能超過平均數(shù)的人數(shù);(3)請盡量從多個角度,選擇合適的統(tǒng)計量分析兩小區(qū)參加測試的居民掌握垃圾分類知識的情況.23.(8分)如圖,在等腰直角三角形ABC中,D是AB的中點,E,F(xiàn)分別是AC,BC.上的點(點E不與端點A,C重合),且連接EF并取EF的中點O,連接DO并延長至點G,使,連接DE,DF,GE,GF(1)求證:四邊形EDFG是正方形;(2)直接寫出當(dāng)點E在什么位置時,四邊形EDFG的面積最小?最小值是多少?24.(8分)解方程:(1)x2+4x﹣21=0(2)x2﹣7x﹣2=025.(10分)已知拋物線y=x2+bx+c經(jīng)過原點,對稱軸為直線x=1,求該拋物線的解析式.26.(10分)定義:如果一個三角形中有兩個內(nèi)角α,β滿足α+2β=90°,那我們稱這個三角形為“近直角三角形”.(1)若△ABC是“近直角三角形”,∠B>90°,∠C=50°,則∠A=度;(2)如圖1,在Rt△ABC中,∠BAC=90°,AB=3,AC=1.若BD是∠ABC的平分線,①求證:△BDC是“近直角三角形”;②在邊AC上是否存在點E(異于點D),使得△BCE也是“近直角三角形”?若存在,請求出CE的長;若不存在,請說明理由.(3)如圖2,在Rt△ABC中,∠BAC=90°,點D為AC邊上一點,以BD為直徑的圓交BC于點E,連結(jié)AE交BD于點F,若△BCD為“近直角三角形”,且AB=5,AF=3,求tan∠C的值.
參考答案一、選擇題(每小題3分,共30分)1、B【解析】由DE∥BC,利用“兩直線平行,同位角相等”可得出∠ADE=∠ABC,∠AED=∠ACB,進而可得出△ADE∽△ABC,再利用相似三角形的面積比等于相似比的平方即可求出結(jié)論.【詳解】∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴△ADE∽△ABC,∴.故選B.【點睛】本題考查了相似三角形的判定與性質(zhì),牢記相似三角形的面積比等于相似比的平方是解題的關(guān)鍵.2、D【分析】根據(jù)拋物線的圖像,判斷出的符號,從而確定一次函數(shù)、反比例函數(shù)的圖像的位置即可.【詳解】解:由拋物線的圖像可知:橫坐標(biāo)為1的點,即在第四象限,因此;∴雙曲線的圖像分布在二、四象限;由于拋物線開口向上,∴,∵對稱軸為直線,∴;∵拋物線與軸有兩個交點,∴;∴直線經(jīng)過一、二、四象限;故選:.【點睛】本題主要考查二次函數(shù),一次函數(shù)以及反比例函數(shù)的圖象與解析式的系數(shù)關(guān)系,熟練掌握函數(shù)解析式的系數(shù)對圖像的影響,是解題的關(guān)鍵.3、A【分析】由左視圖可得出這個幾何體有2層,由俯視圖可得出這個幾何體最底層有4個小正方體.分情況討論即可得出答案.【詳解】解:由題意可得出這個幾何體最底層有4個小正方體,有2層,當(dāng)?shù)诙拥谝涣杏?個小正方體時,主視圖為選項B;當(dāng)?shù)诙拥诙杏?個小正方體時,主視圖為選項C;當(dāng)?shù)诙拥谝涣?第二列分別有1個小正方體時,主視圖為選項D;故選:A.【點睛】本題考查的知識點是簡單幾何體的三視圖,根據(jù)所給三視圖能夠還原幾何體是解此題的關(guān)鍵.4、D【解析】解:三角形紙片ABC中,AB=8,BC=4,AC=1.A.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC不相似,故此選項錯誤;B.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC不相似,故此選項錯誤;C.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC不相似,故此選項錯誤;D.,對應(yīng)邊,則沿虛線剪下的涂色部分的三角形與△ABC相似,故此選項正確;故選D.點睛:此題主要考查了相似三角形的判定,正確利用相似三角形兩邊比值相等且夾角相等的兩三角形相似是解題關(guān)鍵.5、A【分析】如圖,過A作AE⊥BC于E,AF⊥CD于F,垂足為E,F(xiàn),證明△ABE≌△ADF,從而證明四邊形ABCD是菱形,再利用三角函數(shù)算出BC的長,最后根據(jù)菱形的面積公式算出重疊部分的面積即可.【詳解】解:如圖所示:過A作AE⊥BC于E,AF⊥CD于F,垂足為E,F(xiàn),
∴∠AEB=∠AFD=90°,
∵AD∥CB,AB∥CD,
∴四邊形ABCD是平行四邊形,
∵紙條寬度都為1,
∴AE=AF=1,
在△ABE和△ADF中,
∴△ABE≌△ADF(AAS),
∴AB=AD,
∴四邊形ABCD是菱形.
∴BC=AB,
∵=sinα,
∴BC=AB=,
∴重疊部分(圖中陰影部分)的面積為:BC×AE=1×=.
故選:A.【點睛】本題考查菱形的判定與性質(zhì),以及三角函數(shù)的應(yīng)用,關(guān)鍵是證明四邊形ABCD是菱形,利用三角函數(shù)求出BC的長.6、D【分析】設(shè)出反比例函數(shù)解析式,把代入可求得反比例函數(shù)的比例系數(shù),當(dāng)時計算求得表格中未知的值.【詳解】是的反比例函數(shù),,,,,當(dāng)時,,故選:D.【點睛】本題考查了用待定系數(shù)法求反比例函數(shù)解析式;點在反比例函數(shù)圖象上,點的橫縱坐標(biāo)適合函數(shù)解析式,在同一函數(shù)圖象上的點的橫縱坐標(biāo)的積相等.7、C【分析】根據(jù)平行線分線段成比例定理得到,得到BC=3CE,然后利用BC+CE=BE=10可計算出CE的長,即可.【詳解】解:∵AB∥CD∥EF,
∴,
∴BC=3CE,
∵BC+CE=BE,
∴3CE+CE=10,
∴CE=.
故選C.【點睛】本題考查了平行線分線段成比例:三條平行線截兩條直線,所得的對應(yīng)線段成比例.8、D【分析】本題可以利用銳角三角函數(shù)的定義以及勾股定理分別求解,再進行判斷即可.【詳解】∵∠C=90°,BC=6,AC=4,∴AB=,A、sinA=,故此選項錯誤;B、cosA=,故此選項錯誤;C、tanA=,故此選項錯誤;D、tanB=,故此選項正確.故選:D.
【點睛】此題主要考查了銳角三角函數(shù)的定義以及勾股定理,熟練應(yīng)用銳角三角函數(shù)的定義是解決問題的關(guān)鍵.9、A【分析】根據(jù)菱形面積的計算公式求得AC,再利用直角三角形斜邊中線的性質(zhì)即可求得答案.【詳解】∵四邊形ABCD是菱形,OB=4,∴∵,∴,∴;∵AH⊥BC,∴.故選:A.【點睛】本題考查了菱形的性質(zhì)及直角三角形斜邊的中線等于斜邊的一半的性質(zhì),根據(jù)菱形的面積公式:菱形的面積等于兩條對角線乘積的一半是解題的關(guān)鍵.10、B【解析】試題分析:先根據(jù)各選項中反比例函數(shù)圖象的位置確定a的范圍,再根據(jù)a的范圍對拋物線的大致位置進行判斷,從而對各選項作出判斷:∵當(dāng)反比例函數(shù)經(jīng)過第二、四象限時,a<0,∴拋物線(b>0)中a<0,b>0,∴拋物線開口向下.所以A選項錯誤.∵當(dāng)反比例函數(shù)經(jīng)過第一、三象限時,a>0,∴拋物線(b>0)中a>0,b>0,∴拋物線開口向上,拋物線與y軸的交點在x軸上方.所以B選項正確,C,D選項錯誤.故選B.考點:1.二次函數(shù)和反比例函數(shù)的圖象與系數(shù)的關(guān)系;2.數(shù)形結(jié)合思想的應(yīng)用.二、填空題(每小題3分,共24分)11、1【解析】由兩圓的半徑分別為2和5,根據(jù)兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系和兩圓位置關(guān)系求得圓心距即可.【詳解】解:∵兩圓的半徑分別為2和5,兩圓內(nèi)切,∴d=R﹣r=5﹣2=1cm,故答案為1.【點睛】此題考查了圓與圓的位置關(guān)系.解題的關(guān)鍵是掌握兩圓位置關(guān)系與圓心距d,兩圓半徑R,r的數(shù)量關(guān)系間的聯(lián)系.12、【分析】將點B的坐標(biāo)代入反比例函數(shù)求出k,再將點A的坐標(biāo)代入計算即可;【詳解】(1)將代入得,k==-6,所以,反比例函數(shù)解析式為,將點的坐標(biāo)代入得所以m=,故填:.【點睛】此題主要考查反比例函數(shù)的圖像與性質(zhì),解題的關(guān)鍵是熟知待定系數(shù)法求解析式.13、-1<x<2【分析】根據(jù)方程的解確定拋物線與x軸的交點坐標(biāo),即可確定y<0時,x的取值范圍.【詳解】由題意得:二次函數(shù)y=x2+mx+n與x軸的交點坐標(biāo)為(-1,0),(2,0),∵a=1,開口向上,∴y<0時,x的取值范圍是-1<x<2.【點睛】此題考查二次函數(shù)與一元二次方程的關(guān)系,函數(shù)圖象與x軸的交點橫坐標(biāo)即為一元二次方程的解,掌握兩者的關(guān)系是解此題的關(guān)鍵.14、8【解析】根據(jù)相似三角形的性質(zhì)即可解題.【詳解】解:由小孔成像的特征可知,△OAB∽△OCD,由相似三角形的性質(zhì)可知:對應(yīng)高比=相似比=對應(yīng)邊的比,∴30:60=CD:16,解得:CD=8cm.【點睛】本題考查了相似三角形的判定和性質(zhì),屬于簡單題,熟悉性質(zhì)內(nèi)容是解題關(guān)鍵.15、.【分析】取AB中點F,連接FC、FO,根據(jù)斜邊上的中線等于斜邊的一半及等腰三角形三線合一的性質(zhì)得到AB垂直平分OC,利用特殊角的三角函數(shù)即可求得答案.【詳解】如圖,設(shè)AB交OC于E,取AB中點F,連接FC、FO,∵∠MON=∠ACB=90°∴FC=FO(斜邊上的中線等于斜邊的一半),又AB平分OC,∴CE=EO,ABOC(三線合一)在中,BC=1,∠ABC=90,∴,∴∴故答案為:【點睛】本題考查了直角三角形的性質(zhì),斜邊上的中線等于斜邊的一半,等腰三角形的性質(zhì),綜合性較強,但難度不大,構(gòu)造合適的輔助線是解題的關(guān)鍵.16、.【分析】可證△AOB≌△AOC,推出∠ACO=∠ABD,OA=OC,∠OAC=∠ACO=∠ABD,∠ADO=∠ADB,即可證明△OAD∽△ABD;依據(jù)對應(yīng)邊成比例,設(shè)OD=x,表示出AB、AD,根據(jù)AD2=AB?DC,列方程求解即可.【詳解】在△AOB和△AOC中,∵AB=AC,OB=OC,OA=OA,∴△AOB≌△AOC(SSS),∴∠ABO=∠ACO,∵OA=OA,∴∠ACO=∠OAD,∵∠ADO=∠BDA,∴△ADO∽△BDA,∴,設(shè)OD=x,則BD=1+x,∴,∴OD,AB,∵DC=AC﹣AD=AB﹣AD,AD2=AB?DC,()2═(),整理得:x2+x﹣1=0,解得:x或x(舍去),因此AD,故答案為.【點睛】本題考查了圓的綜合題、全等三角形的判定和性質(zhì)、相似三角形的判定和性質(zhì)、比例中項等知識,解題的關(guān)鍵是靈活運用所學(xué)知識解決問題,利用參數(shù)解決問題是數(shù)學(xué)解題中經(jīng)常用到的方法.17、【分析】根據(jù)比例式設(shè)a=2k,b=5k,代入求值即可解題.【詳解】解:∵,設(shè)a=2k,b=5k,∴【點睛】本題考查了比例的性質(zhì),屬于簡單題,設(shè)k法是解題關(guān)鍵.18、1【分析】(1)根據(jù),求出扇形弧長,即圓錐底面周長;(2)根據(jù),即,求圓錐底面半徑.【詳解】該圓錐的底面半徑=故答案為:1.【點睛】圓錐的側(cè)面展開圖是扇形,解題關(guān)鍵是理解扇形弧長就是圓錐底面周長.三、解答題(共66分)19、(1)A、B兩觀景臺之間的距離為=(5+5)km;(2)觀測站B到射線AP的最短距離為()km.【分析】(1)過點P作PD⊥AB于點D,先解Rt△PBD,得到BD和PD的長,再解Rt△PAD,得到AD和AP的長,然后根據(jù)BD+AD=AB,即可求解;
(2)過點B作BF⊥AC于點F,解直角三角形即可得到結(jié)論.【詳解】解:(1)如圖,過點P作PD⊥AB于點D.在Rt△PBD中,∠BDP=90°,∠PBD=90°﹣45°=45°,∴BD=PD=BP=5km.在Rt△PAD中,∠ADP=90°,∠PAD=90°﹣60°=30°,∴AD=PD=5km,PA=1.∴AB=BD+AD=(5+5)km;答:A、B兩觀景臺之間的距離為=(5+5)km;(2)如圖,過點B作BF⊥AC于點F,則∠BAP=30°,∵AB=(5+5),∴BF=AB=()km.答:觀測站B到射線AP的最短距離為()km.【點睛】本題考查了解直角三角形的應(yīng)用-方向角問題,難度適中.通過作輔助線,構(gòu)造直角三角形是解題的關(guān)鍵.20、(1);(2)詳見解析【分析】(1)根據(jù)等腰三角形的性質(zhì)及角平分線的性質(zhì)證得∠A=∠BCE,再利用角的和差關(guān)系及外角性質(zhì)可證得∠ABC=∠DCE,從而得到結(jié)果;(2)根據(jù)∠ABC=∠DBE可證得∠ABD=∠CBE,再結(jié)合(1)利用ASA可證明與全等,從而得到結(jié)論.【詳解】解:(1),,又平分,,,又,,;(2)由(1)知,,,即,在與中,,≌(ASA),.【點睛】本題考查了等腰三角形的性質(zhì),角平分線的性質(zhì),外角性質(zhì),全等三角形的判定與性質(zhì),熟記性質(zhì)定理是解題關(guān)鍵.21、(1)見解析;(2)見解析;(3)6π【分析】(1)連接AD,根據(jù)圓周角定理得到∠ADB=90°,然后由三線合一可得結(jié)論;(2)連接OD,證明OD∥AC,得到∠ODE=90°即可;(3)根據(jù)三角函數(shù)的定義得到sinB===,求得∠B=60°,得到∠BOD=60°,根據(jù)扇形的面積公式即可得到結(jié)論.【詳解】證明:(1)連接AD,∵AB是⊙O的直徑,∴∠ADB=90°,又∵AB=AC,∴DC=BD;(2)連接OD,∵OA=OB,CD=BD,∴OD∥AC,∴∠ODE=∠CED,又∵DE⊥AC,∴∠CED=90°,∴∠ODE=90°,即OD⊥DE.∴DE是⊙O的切線;(3)∵AB=12,AD=6,∴sinB===,∴∠B=60°,∴∠BOD=60°,∴S扇形BOD==6π.【點睛】本題考查了圓周角度定理、切線的判定、三角函數(shù)的應(yīng)用以及扇形面積的計算,熟練掌握基礎(chǔ)知識是解題的關(guān)鍵.22、(1)76;(2)300人;(3)從平均數(shù)看,兩個小區(qū)居民對垃圾分類知識掌握情況的平均水平相同;從方差看,B小區(qū)居民對垃圾分類知識掌握的情況比A小區(qū)穩(wěn)定;從中位數(shù)看,B小區(qū)至少有一半的居民成績高于平均數(shù)【分析】(1)因為有50名居民,中位數(shù)應(yīng)為第25名和第26名成績的平均值,所以中位數(shù)落在第四組,再根據(jù)信息二中的表格數(shù)據(jù)可得出結(jié)果;
(2)先求出A小區(qū)超過平均數(shù)的人數(shù),即(16-1)+10=25(人),再根據(jù)小區(qū)600名居民成績能超過平均數(shù)的人數(shù)=600×,即可得出結(jié)果;
(3)從平均數(shù)看,兩個小區(qū)居民對垃圾分類知識掌握情況的平均水平相同;從方差看,B小區(qū)居民對垃圾分類知識掌握的情況比A小區(qū)穩(wěn)定;從中位數(shù)看,B小區(qū)至少有一半的居民成績高于平均數(shù).【詳解】解:(1)因為有50名居民,中位數(shù)應(yīng)為第25名和第26名成績的平均值.而前三組的總?cè)藬?shù)為:4+8+12=24(人),所以中位數(shù)落在第四組,第25名的成績?yōu)?5分,第26名的成績?yōu)?7分,所以中位數(shù)為76,故答案為:76;(2)根據(jù)題意得,600×=300(人),答:A小區(qū)600名居民成績能超過平均數(shù)的人數(shù)300人;(3)從平均數(shù)看,兩個小區(qū)居民對垃圾分類知識掌握情況的平均水平相同;從方差看,B小區(qū)居民對垃圾分類知識掌握的情況比A小區(qū)穩(wěn)定;從中位數(shù)看,B小區(qū)至少有一半的居民成績高于平均數(shù).(答案不唯一,合理即可;)【點睛】本題考查的是條形統(tǒng)計圖.讀懂統(tǒng)計圖,從不同的統(tǒng)計圖中得到必要的信息是解決問題的關(guān)鍵.條形統(tǒng)計圖能清楚地表示出每個項目的數(shù)據(jù).23、(1)詳見解析;(2)當(dāng)點E為線段AC的中點時,四邊形EDFG的面積最小,該最小值為4【解析】(1)連接CD,根據(jù)等腰直角三角形的性質(zhì)可得出∠A=∠DCF=45°、AD=CD,結(jié)合AE=CF可證出△ADE≌△CDF(SAS),根據(jù)全等三角形的性質(zhì)可得出DE=DF、ADE=∠CDF,通過角的計算可得出∠EDF=90°,再根據(jù)O為EF的中點、GO=OD,即可得出GD⊥EF,且GD=2OD=EF,由此即可證出四邊形EDFG是正方形;(2)過點D作DE′⊥AC于E′,根據(jù)等腰直角三角形的性質(zhì)可得出DE′的長度,從而得出2≤DE<2,再根據(jù)正方形的面積公式即可得出四邊形EDFG的面積的最小值.【詳解】(1)證明:連接CD,如圖1所示.∵為等腰直角三角形,,D是AB的中點,∴在和中,∴,∴,∵,∴,∴為等腰直角三角形.∵O為EF的中點,,∴,且,∴四邊形EDFG是正方形;(2)解:過點D作于E′,如圖2所示.∵為等腰直角三角形,,∴,點E′為AC的中點,∴(點E與點E′重合時取等號).∴∴當(dāng)點E為線段AC的中點時,四邊形EDFG的面積最小,該最小值為4【點睛】本題考查了正方形的判定與性質(zhì)、等腰直角三角形以及全等三角形的判定與性質(zhì),解題的關(guān)鍵是:(1)找出GD⊥EF且GD=EF;(2)根據(jù)正方形的面積公式找出4≤S四邊形EDFG<1.24、(1)x1=3,x2=﹣7;(2)x1=,x2=【分析】(1)根據(jù)因式分解法解方程即可;(2)根據(jù)公式法解方程即可.【詳解】解:(1)x2+4x﹣21=0(x﹣3)(x+7)=0解得x1=3,x2=﹣7;(2)x2﹣7x﹣2=0∵△=49+8=57∴x=解得x1=,x2=.【點睛】本題考查了解一元二次方程,其方法有直接開平方法、公式法、配方法、因式分解法,根據(jù)一元二次方程特點選擇合適的方法是解題的關(guān)鍵.25、y=x2﹣2x.【分析】根據(jù)拋物線經(jīng)過原點可得c=0,根據(jù)對稱軸公式求得b,即可求得其解析式.【詳解】∵拋物線y=x2+bx+c經(jīng)過原點,∴c=0,又∵拋物線y=x2+bx+c的對稱軸為x=1,∴﹣=1,解得b=﹣2∴拋物線的解析式為y=x2﹣2x.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,熟練掌握對稱軸公式是解題的關(guān)鍵.26、(1)20;(2)①見解析;②存在,CE=;(3)tan∠C的值為或.【分析】(1)∠B不可能是α或β,當(dāng)∠A=α?xí)r,∠C=β=50°,α+2β=90°,不成立;故∠A=β,∠C=α,α+2β=90°,則β=20°;(2)①如圖1,設(shè)∠=ABD∠DBC=β,∠C=α,則α+2β=90°,故△BDC是“近直角三角形”;②∠ABE=∠C,則△ABC∽△AEB,即,即,解得:AE=,即可求解.(3)①如圖2所示,當(dāng)∠ABD=∠DB
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030年中國高硬脆材料加工行業(yè)開拓第二增長曲線戰(zhàn)略制定與實施研究報告
- 2025-2030年中國全鋼子午胎行業(yè)開拓第二增長曲線戰(zhàn)略制定與實施研究報告
- 在2024年歲末年初安全生產(chǎn)工作會議上的講話
- 2020-2025年中國物流自動化行業(yè)市場前景預(yù)測及投資方向研究報告
- 廣東省深圳市鹽田區(qū)2023-2024學(xué)年五年級上學(xué)期英語期末試卷
- 五年級數(shù)學(xué)(小數(shù)除法)計算題專項練習(xí)及答案匯編
- 應(yīng)急移動雷達塔 5米玻璃鋼接閃桿 CMCE電場補償器避雷針
- 快易冷儲罐知識培訓(xùn)課件
- 2025年人教版英語五年級下冊教學(xué)進度安排表
- 世界糧食日珍惜節(jié)約糧食主題66
- 2024-2025學(xué)年北京房山區(qū)初三(上)期末英語試卷
- 2024年三年級英語教學(xué)工作總結(jié)(修改)
- 咖啡廳店面轉(zhuǎn)讓協(xié)議書
- 期末(試題)-2024-2025學(xué)年人教PEP版英語六年級上冊
- 鮮奶購銷合同模板
- 申論公務(wù)員考試試題與參考答案(2024年)
- DB4101T 9.1-2023 反恐怖防范管理規(guī)范 第1部分:通則
- 2024-2030年中國公安信息化建設(shè)與IT應(yīng)用行業(yè)競爭策略及投資模式分析報告
- 2024年加油站場地出租協(xié)議
- 南寧房地產(chǎn)市場月報2024年08月
- 2024年金融理財-擔(dān)保公司考試近5年真題附答案
評論
0/150
提交評論