版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年眉山市重點中學(xué)中考數(shù)學(xué)最后一模試卷注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.如圖,直線AB與直線CD相交于點O,E是∠COB內(nèi)一點,且OE⊥AB,∠AOC=35°,則∠EOD的度數(shù)是()A.155° B.145° C.135° D.125°2.已知二次函數(shù)的圖象如圖所示,則下列說法正確的是()A.<0 B.<0 C.<0 D.<03.關(guān)于x的方程x2+(k2﹣4)x+k+1=0的兩個根互為相反數(shù),則k值是()A.﹣1 B.±2 C.2 D.﹣24.一組數(shù)據(jù)1,2,3,3,4,1.若添加一個數(shù)據(jù)3,則下列統(tǒng)計量中,發(fā)生變化的是()A.平均數(shù) B.眾數(shù) C.中位數(shù) D.方差5.如圖所示的幾何體是由4個大小相同的小立方體搭成,其俯視圖是()A. B. C. D.6.下列計算正確的是()A.2x+3x=5x B.2x?3x=6x C.(x3)2=5 D.x3﹣x2=x7.如圖所示的兩個四邊形相似,則α的度數(shù)是()A.60° B.75° C.87° D.120°8.把不等式組的解集表示在數(shù)軸上,正確的是()A. B.C. D.9.如果一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,那么k、b應(yīng)滿足的條件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<010.下列運算正確的是()A.2a2+3a2=5a4 B.(﹣)﹣2=4C.(a+b)(﹣a﹣b)=a2﹣b2 D.8ab÷4ab=2ab11.已知一元二次方程2x2+2x﹣1=0的兩個根為x1,x2,且x1<x2,下列結(jié)論正確的是()A.x1+x2=1 B.x1?x2=﹣1 C.|x1|<|x2| D.x12+x1=12.如圖,在平面直角坐標(biāo)系中,⊙P的圓心坐標(biāo)是(3,a)(a>3),半徑為3,函數(shù)y=x的圖象被⊙P截得的弦AB的長為4,則a的值是()A.4 B.3+ C.3 D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如圖,在矩形ABCD中,點E是邊CD的中點,將△ADE沿AE折疊后得到△AFE,且點F在矩形ABCD內(nèi)部.將AF延長交邊BC于點G.若,則(用含k的代數(shù)式表示).14.如圖,量角器的0度刻度線為,將一矩形直尺與量角器部分重疊,使直尺一邊與量角器相切于點,直尺另一邊交量角器于點,,量得,點在量角器上的讀數(shù)為,則該直尺的寬度為____________.15.如圖,點A,B在反比例函數(shù)y=(x>0)的圖象上,點C,D在反比例函數(shù)y=(k>0)的圖象上,AC∥BD∥y軸,已知點A,B的橫坐標(biāo)分別為1,2,△OAC與△ABD的面積之和為,則k的值為_____.16.若﹣4xay+x2yb=﹣3x2y,則a+b=_____.17.用換元法解方程時,如果設(shè),那么原方程化成以為“元”的方程是________.18.計算(﹣3)+(﹣9)的結(jié)果為______.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)由于霧霾天氣頻發(fā),市場上防護口罩出現(xiàn)熱銷,某醫(yī)藥公司每月固定生產(chǎn)甲、乙兩種型號的防霧霾口罩共20萬只,且所有產(chǎn)品當(dāng)月全部售出,原料成本、銷售單價及工人生產(chǎn)提成如表:若該公司五月份的銷售收入為300萬元,求甲、乙兩種型號的產(chǎn)品分別是多少萬只?公司實行計件工資制,即工人每生產(chǎn)一只口罩獲得一定金額的提成,如果公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過239萬元,應(yīng)怎樣安排甲、乙兩種型號的產(chǎn)量,可使該月公司所獲利潤最大?并求出最大利潤(利潤=銷售收入﹣投入總成本)20.(6分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)21.(6分)如圖,BD是矩形ABCD的一條對角線.(1)作BD的垂直平分線EF,分別交AD、BC于點E、F,垂足為點O.(要求用尺規(guī)作圖,保留作圖痕跡,不要求寫作法);(2)求證:DE=BF.22.(8分)如圖,在平行四邊形中,的平分線與邊相交于點.(1)求證;(2)若點與點重合,請直接寫出四邊形是哪種特殊的平行四邊形.23.(8分)平面直角坐標(biāo)系xOy中,橫坐標(biāo)為a的點A在反比例函數(shù)y1═(x>0)的圖象上,點A′與點A關(guān)于點O對稱,一次函數(shù)y2=mx+n的圖象經(jīng)過點A′.(1)設(shè)a=2,點B(4,2)在函數(shù)y1、y2的圖象上.①分別求函數(shù)y1、y2的表達式;②直接寫出使y1>y2>0成立的x的范圍;(2)如圖①,設(shè)函數(shù)y1、y2的圖象相交于點B,點B的橫坐標(biāo)為3a,△AA'B的面積為16,求k的值;(3)設(shè)m=,如圖②,過點A作AD⊥x軸,與函數(shù)y2的圖象相交于點D,以AD為一邊向右側(cè)作正方形ADEF,試說明函數(shù)y2的圖象與線段EF的交點P一定在函數(shù)y1的圖象上.24.(10分)如圖,以△ABC的邊AB為直徑的⊙O與邊AC相交于點D,BC是⊙O的切線,E為BC的中點,連接AE、DE.求證:DE是⊙O的切線;設(shè)△CDE的面積為S1,四邊形ABED的面積為S1.若S1=5S1,求tan∠BAC的值;在(1)的條件下,若AE=3,求⊙O的半徑長.25.(10分)直線y1=kx+b與反比例函數(shù)的圖象分別交于點A(m,4)和點B(n,2),與坐標(biāo)軸分別交于點C和點D.(1)求直線AB的解析式;(2)根據(jù)圖象寫出不等式kx+b﹣≤0的解集;(3)若點P是x軸上一動點,當(dāng)△COD與△ADP相似時,求點P的坐標(biāo).26.(12分)在正方形ABCD中,動點E,F(xiàn)分別從D,C兩點同時出發(fā),以相同的速度在直線DC,CB上移動.(1)如圖1,當(dāng)點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數(shù)量關(guān)系和位置關(guān)系,并說明理由;(2)如圖2,當(dāng)E,F(xiàn)分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結(jié)論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,請你直接寫出△ACE為等腰三角形時CE:CD的值;(3)如圖3,當(dāng)E,F(xiàn)分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F(xiàn)的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.27.(12分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=kx+b與反比例函數(shù)y=(m≠0)的圖象交于點A(3,1),且過點B(0,﹣2).(1)求反比例函數(shù)和一次函數(shù)的表達式;(2)如果點P是x軸上一點,且△ABP的面積是3,求點P的坐標(biāo).
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】
解:∵∴∵EO⊥AB,∴∴故選D.2、B【解析】
根據(jù)拋物線的開口方向確定a,根據(jù)拋物線與y軸的交點確定c,根據(jù)對稱軸確定b,根據(jù)拋物線與x軸的交點確定b2-4ac,根據(jù)x=1時,y>0,確定a+b+c的符號.【詳解】解:∵拋物線開口向上,∴a>0,∵拋物線交于y軸的正半軸,∴c>0,∴ac>0,A錯誤;∵->0,a>0,∴b<0,∴B正確;∵拋物線與x軸有兩個交點,∴b2-4ac>0,C錯誤;當(dāng)x=1時,y>0,∴a+b+c>0,D錯誤;故選B.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.3、D【解析】
根據(jù)一元二次方程根與系數(shù)的關(guān)系列出方程求解即可.【詳解】設(shè)方程的兩根分別為x1,x1,
∵x1+(k1-4)x+k-1=0的兩實數(shù)根互為相反數(shù),
∴x1+x1,=-(k1-4)=0,解得k=±1,
當(dāng)k=1,方程變?yōu)椋簒1+1=0,△=-4<0,方程沒有實數(shù)根,所以k=1舍去;
當(dāng)k=-1,方程變?yōu)椋簒1-3=0,△=11>0,方程有兩個不相等的實數(shù)根;
∴k=-1.
故選D.【點睛】本題考查的是根與系數(shù)的關(guān)系.x1,x1是一元二次方程ax1+bx+c=0(a≠0)的兩根時,x1+x1=?,x1x1=,反過來也成立.4、D【解析】A.∵原平均數(shù)是:(1+2+3+3+4+1)÷6=3;添加一個數(shù)據(jù)3后的平均數(shù)是:(1+2+3+3+4+1+3)÷7=3;∴平均數(shù)不發(fā)生變化.B.∵原眾數(shù)是:3;添加一個數(shù)據(jù)3后的眾數(shù)是:3;∴眾數(shù)不發(fā)生變化;C.∵原中位數(shù)是:3;添加一個數(shù)據(jù)3后的中位數(shù)是:3;∴中位數(shù)不發(fā)生變化;D.∵原方差是:;添加一個數(shù)據(jù)3后的方差是:;∴方差發(fā)生了變化.故選D.點睛:本題主要考查的是眾數(shù)、中位數(shù)、方差、平均數(shù)的,熟練掌握相關(guān)概念和公式是解題的關(guān)鍵.5、C【解析】試題分析:根據(jù)三視圖的意義,可知俯視圖為從上面往下看,因此可知共有三個正方形,在一條線上.故選C.考點:三視圖6、A【解析】
依據(jù)合并同類項法則、單項式乘單項式法則、積的乘方法則進行判斷即可.【詳解】A、2x+3x=5x,故A正確;B、2x?3x=6x2,故B錯誤;C、(x3)2=x6,故C錯誤;D、x3與x2不是同類項,不能合并,故D錯誤.故選A.【點睛】本題主要考查的是整式的運算,熟練掌握相關(guān)法則是解題的關(guān)鍵.7、C【解析】【分析】根據(jù)相似多邊形性質(zhì):對應(yīng)角相等.【詳解】由已知可得:α的度數(shù)是:360?-60?-75?-138?=87?故選C【點睛】本題考核知識點:相似多邊形.解題關(guān)鍵點:理解相似多邊形性質(zhì).8、A【解析】
分別求出各個不等式的解集,再求出這些解集的公共部分并在數(shù)軸上表示出來即可.【詳解】由①,得x≥2,
由②,得x<1,
所以不等式組的解集是:2≤x<1.
不等式組的解集在數(shù)軸上表示為:
.
故選A.【點睛】本題考查的是解一元一次不等式組.熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關(guān)鍵.9、B【解析】試題分析:∵一次函數(shù)y=kx+b(k、b是常數(shù),k≠0)的圖象經(jīng)過第一、二、四象限,∴k<0,b>0,故選B.考點:一次函數(shù)的性質(zhì)和圖象10、B【解析】
根據(jù)合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則對各選項依次進行判斷即可解答.【詳解】A.2a2+3a2=5a2,故本選項錯誤;B.(?)-2=4,正確;C.(a+b)(?a?b)=?a2?2ab?b2,故本選項錯誤;D.8ab÷4ab=2,故本選項錯誤.故答案選B.【點睛】本題考查了合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則,解題的關(guān)鍵是熟練的掌握合并同類項的法則、平方差公式、冪的乘方與積的乘方運算法則.11、D【解析】【分析】直接利用根與系數(shù)的關(guān)系對A、B進行判斷;由于x1+x2<0,x1x2<0,則利用有理數(shù)的性質(zhì)得到x1、x2異號,且負(fù)數(shù)的絕對值大,則可對C進行判斷;利用一元二次方程解的定義對D進行判斷.【詳解】根據(jù)題意得x1+x2=﹣=﹣1,x1x2=﹣,故A、B選項錯誤;∵x1+x2<0,x1x2<0,∴x1、x2異號,且負(fù)數(shù)的絕對值大,故C選項錯誤;∵x1為一元二次方程2x2+2x﹣1=0的根,∴2x12+2x1﹣1=0,∴x12+x1=,故D選項正確,故選D.【點睛】本題考查了一元二次方程的解、一元二次方程根與系數(shù)的關(guān)系,熟練掌握相關(guān)內(nèi)容是解題的關(guān)鍵.12、B【解析】試題解析:作PC⊥x軸于C,交AB于D,作PE⊥AB于E,連結(jié)PB,如圖,∵⊙P的圓心坐標(biāo)是(3,a),∴OC=3,PC=a,把x=3代入y=x得y=3,∴D點坐標(biāo)為(3,3),∴CD=3,∴△OCD為等腰直角三角形,∴△PED也為等腰直角三角形,∵PE⊥AB,∴AE=BE=AB=×4=2,在Rt△PBE中,PB=3,∴PE=,∴PD=PE=,∴a=3+.故選B.考點:1.垂徑定理;2.一次函數(shù)圖象上點的坐標(biāo)特征;3.勾股定理.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、。【解析】試題分析:如圖,連接EG,∵,∴設(shè),則?!唿cE是邊CD的中點,∴?!摺鰽DE沿AE折疊后得到△AFE,∴。易證△EFG≌△ECG(HL),∴。∴。∴在Rt△ABG中,由勾股定理得:,即?!唷!啵ㄖ蝗≌担!?。14、【解析】
連接OC,OD,OC與AD交于點E,根據(jù)圓周角定理有根據(jù)垂徑定理有:解直角即可.【詳解】連接OC,OD,OC與AD交于點E,直尺的寬度:故答案為【點睛】考查垂徑定理,熟記垂徑定理是解題的關(guān)鍵.15、1【解析】
過A作x軸垂線,過B作x軸垂線,求出A(1,1),B(2,),C(1,k),D(2,),將面積進行轉(zhuǎn)換S△OAC=S△COM﹣S△AOM,S△ABD=S梯形AMND﹣S梯形AAMNB進而求解.【詳解】解:過A作x軸垂線,過B作x軸垂線,點A,B在反比例函數(shù)y=(x>0)的圖象上,點A,B的橫坐標(biāo)分別為1,2,∴A(1,1),B(2,),∵AC∥BD∥y軸,∴C(1,k),D(2,),∵△OAC與△ABD的面積之和為,,S△ABD=S梯形AMND﹣S梯形AAMNB,,∴k=1,故答案為1.【點睛】本題考查反比例函數(shù)的性質(zhì),k的幾何意義.能夠?qū)⑷切蚊娣e進行合理的轉(zhuǎn)換是解題的關(guān)鍵.16、1【解析】
兩個單項式合并成一個單項式,說明這兩個單項式為同類項.【詳解】解:由同類項的定義可知,a=2,b=1,∴a+b=1.故答案為:1.【點睛】本題考查的知識點為:同類項中相同字母的指數(shù)是相同的.17、y-【解析】分析:根據(jù)換元法,可得答案.詳解:﹣=1時,如果設(shè)=y,那么原方程化成以y為“元”的方程是y﹣=1.故答案為y﹣=1.點睛:本題考查了換元法解分式方程,把換元為y是解題的關(guān)鍵.18、-1【解析】試題分析:利用同號兩數(shù)相加的法則計算即可得原式=﹣(3+9)=﹣1,故答案為﹣1.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)甲型號的產(chǎn)品有10萬只,則乙型號的產(chǎn)品有10萬只;(2)安排甲型號產(chǎn)品生產(chǎn)15萬只,乙型號產(chǎn)品生產(chǎn)5萬只,可獲得最大利潤91萬元.【解析】
(1)設(shè)甲型號的產(chǎn)品有x萬只,則乙型號的產(chǎn)品有(20﹣x)萬只,根據(jù)銷售收入為300萬元可列方程18x+12(20﹣x)=300,解方程即可;(2)設(shè)安排甲型號產(chǎn)品生產(chǎn)y萬只,則乙型號產(chǎn)品生產(chǎn)(20﹣y)萬只,根據(jù)公司六月份投入總成本(原料總成本+生產(chǎn)提成總額)不超過239萬元列出不等式,求出不等式的解集確定出y的范圍,再根據(jù)利潤=售價﹣成本列出W與y的一次函數(shù),根據(jù)y的范圍確定出W的最大值即可.【詳解】(1)設(shè)甲型號的產(chǎn)品有x萬只,則乙型號的產(chǎn)品有(20﹣x)萬只,根據(jù)題意得:18x+12(20﹣x)=300,解得:x=10,則20﹣x=20﹣10=10,則甲、乙兩種型號的產(chǎn)品分別為10萬只,10萬只;(2)設(shè)安排甲型號產(chǎn)品生產(chǎn)y萬只,則乙型號產(chǎn)品生產(chǎn)(20﹣y)萬只,根據(jù)題意得:13y+8.8(20﹣y)≤239,解得:y≤15,根據(jù)題意得:利潤W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,當(dāng)y=15時,W最大,最大值為91萬元.所以安排甲型號產(chǎn)品生產(chǎn)15萬只,乙型號產(chǎn)品生產(chǎn)5萬只時,可獲得最大利潤為91萬元.考點:一元一次方程的應(yīng)用;一元一次不等式的應(yīng)用;一次函數(shù)的應(yīng)用.20、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】
(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點E,H分別為邊AB,DA的中點,∴EH∥BD,EH=BD,∵點F,G分別為邊BC,CD的中點,∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點E,F(xiàn),G分別為邊AB,BC,CD的中點,∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設(shè)AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點:平行四邊形的判定與性質(zhì);中點四邊形.21、(1)作圖見解析;(2)證明見解析;【解析】
(1)分別以B、D為圓心,以大于BD的長為半徑四弧交于兩點,過兩點作直線即可得到線段BD的垂直平分線;(2)利用垂直平分線證得△DEO≌△BFO即可證得結(jié)論.【詳解】解:(1)如圖:(2)∵四邊形ABCD為矩形,∴AD∥BC,∴∠ADB=∠CBD,∵EF垂直平分線段BD,∴BO=DO,在△DEO和三角形BFO中,,∴△DEO≌△BFO(ASA),∴DE=BF.考點:1.作圖—基本作圖;2.線段垂直平分線的性質(zhì);3.矩形的性質(zhì).22、(1)見解析;(2)菱形.【解析】
(1)根據(jù)角平分線的性質(zhì)可得∠ADE=∠CDE,再由平行線的性質(zhì)可得AB∥CD,易得AD=AE,從而可證得結(jié)論;(2)若點與點重合,可證得AD=AB,根據(jù)鄰邊相等的平行四邊形是菱形即可作出判斷.【詳解】(1)∵DE平分∠ADC,∴∠ADE=∠CDE.∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,AD=BC,AB=CD.∵∠AED=∠CDE.∴∠ADE=∠AED.∴AD=AE.∴BC=AE.∵AB=AE+EB.∴BE+BC=CD.(2)菱形,理由如下:由(1)可知,AD=AE,∵點E與B重合,∴AD=AB.∵四邊形ABCD是平行四邊形∴平行四邊形ABCD為菱形.【點睛】本題考查了平行四邊形的性質(zhì),平行線的性質(zhì),等腰三角形的性質(zhì),菱形的性質(zhì),熟練掌握各知識是解題的關(guān)鍵.23、(1)y1=,y2=x﹣2;②2<x<4;(2)k=6;(3)證明見解析.【解析】分析:(1)由已知代入點坐標(biāo)即可;(2)面積問題可以轉(zhuǎn)化為△AOB面積,用a、k表示面積問題可解;(3)設(shè)出點A、A′坐標(biāo),依次表示AD、AF及點P坐標(biāo).詳解:(1)①由已知,點B(4,2)在y1═(x>0)的圖象上∴k=8∴y1=∵a=2∴點A坐標(biāo)為(2,4),A′坐標(biāo)為(﹣2,﹣4)把B(4,2),A(﹣2,﹣4)代入y2=mx+n得,,解得,∴y2=x﹣2;②當(dāng)y1>y2>0時,y1=圖象在y2=x﹣2圖象上方,且兩函數(shù)圖象在x軸上方,∴由圖象得:2<x<4;(2)分別過點A、B作AC⊥x軸于點C,BD⊥x軸于點D,連BO,∵O為AA′中點,S△AOB=S△AOA′=8∵點A、B在雙曲線上∴S△AOC=S△BOD∴S△AOB=S四邊形ACDB=8由已知點A、B坐標(biāo)都表示為(a,)(3a,)∴,解得k=6;(3)由已知A(a,),則A′為(﹣a,﹣).把A′代入到y(tǒng)=,得:﹣,∴n=,∴A′B解析式為y=﹣.當(dāng)x=a時,點D縱坐標(biāo)為,∴AD=∵AD=AF,∴點F和點P橫坐標(biāo)為,∴點P縱坐標(biāo)為.∴點P在y1═(x>0)的圖象上.點睛:本題綜合考查反比例函數(shù)、一次函數(shù)圖象及其性質(zhì),解答過程中,涉及到了面積轉(zhuǎn)化方法、待定系數(shù)法和數(shù)形結(jié)合思想.24、(1)見解析;(1)tan∠BAC=;(3)⊙O的半徑=1.【解析】
(1)連接DO,由圓周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根據(jù)E為BC的中點可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性質(zhì)就可以得出∠ODE=90°就可以得出結(jié)論.(1)由S1=5S1可得△ADB的面積是△CDE面積的4倍,可求得AD:CD=1:1,可得.則tan∠BAC的值可求;(3)由(1)的關(guān)系即可知,在Rt△AEB中,由勾股定理即可求AB的長,從而求⊙O的半徑.【詳解】解:(1)連接OD,∴OD=OB∴∠ODB=∠OBD.∵AB是直徑,∴∠ADB=90°,∴∠CDB=90°.∵E為BC的中點,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB為直徑的⊙O的切線,∴AB⊥BC,∴∠EBO=90°,∴∠ODE=90°,∴DE是⊙O的切線;(1)∵S1=5S1∴S△ADB=1S△CDB∴∵△BDC∽△ADB∴∴DB1=AD?DC∴∴tan∠BAC==.(3)∵tan∠BAC=∴,得BC=AB∵E為BC的中點∴BE=AB∵AE=3,∴在Rt△AEB中,由勾股定理得,解得AB=4故⊙O的半徑R=AB=1.【點睛】本題考查了圓周角定理的運用,直角三角形的性質(zhì)的運用,等腰三角形的性質(zhì)的運用,切線的判定定理的運用,勾股定理的運用,相似三角形的判定和性質(zhì),解答時正確添加輔助線是關(guān)鍵.25、(1)y=﹣x+6;(2)0<x<2或x>4;(3)點P的坐標(biāo)為(2,0)或(﹣3,0).【解析】
(1)將點坐標(biāo)代入雙曲線中即可求出,最后將點坐標(biāo)代入直線解析式中即可得出結(jié)論;(2)根據(jù)點坐標(biāo)和圖象即可得出結(jié)論;(3)先求出點坐標(biāo),進而求出,設(shè)出點P坐標(biāo),最后分兩種情況利用相似三角形得出比例式建立方程求解即可得出結(jié)論.【詳解】解:(1)∵點和點在反比例函數(shù)的圖象上,,解得,即把兩點代入中得,解得:,所以直線的解析式為:;(2)由圖象可得,當(dāng)時,的解集為或.(3)由(1)得直線的解析式為,當(dāng)時,y=6,,,當(dāng)時,,∴點坐標(biāo)為.設(shè)P點坐標(biāo)為,由題可以,點在點左側(cè),則由可得①當(dāng)時,,,解得,故點P坐標(biāo)為②當(dāng)時,,,解得,即點P的坐標(biāo)為因此,點P的坐標(biāo)為或時,與相似.【點睛】此題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,相似三角形的性質(zhì),用方程的思想和分類討論的思想解決問題是解本題的關(guān)鍵.26、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據(jù)正方形的性質(zhì),由SAS先證得△ADE≌△DCF.由全等三角形的性質(zhì)得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當(dāng)AC=CE時,設(shè)正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當(dāng)AE=AC時,設(shè)正方形的邊長為a
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽理工大學(xué)《熱工與流體力學(xué)》2021-2022學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《光電類導(dǎo)論》2021-2022學(xué)年期末試卷
- 沈陽理工大學(xué)《單片機原理與應(yīng)用》2021-2022學(xué)年期末試卷
- 管護經(jīng)營合同更名理
- 合同標(biāo)準(zhǔn)安全條款自查報告范文
- 銀行員工轉(zhuǎn)正申請書范文6篇
- 2024系統(tǒng)開發(fā)合同2
- 2024消防工程合同范本(修改)
- 深圳大學(xué)《中美關(guān)系史》2021-2022學(xué)年第一學(xué)期期末試卷
- 應(yīng)急管理條例解讀
- 高夫品牌市場分析報告
- 職業(yè)規(guī)劃書-數(shù)字化設(shè)計與制造技術(shù)
- 國家臨床重點??平ㄔO(shè)項目申報書
- 成語故事一葉障目
- 美術(shù)培訓(xùn)幼兒園課件
- 《中小學(xué)書法教育指導(dǎo)綱要》解讀
- 煤炭檢驗培訓(xùn)課件
- 雙塔精餾公用工程故障處理(完成)雙塔精餾公用工程故障處理(完成)
- 小學(xué)生學(xué)籍卡片.模板
- 印刷設(shè)計行業(yè)檔案管理制度完善
- 少年科普經(jīng)典:從一到無窮大
評論
0/150
提交評論