版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
Random(Poissondistribution)inthefieldoffinancialapplications
【Abstract】mathematicalfinanceasasubject.Usingagreatdealofteachingtheoryandmethodstudyandsolvemajortheoriesinfinancialissues,practicalproblems,andsome,suchasthepricingoffinancialinnovation.Duetofinancialproblemsthecomplexityofthemathematicalknowledge,inadditiontothebaseofknowledge,thereareplentyoftheoriesandmethodsofmodernmathematics.Inthisarticleweintroducethevolumefluctuationsinstockpricemodel.ApplicationofPoissonprocesstheorydescribesthevolatilityofstockprices,andbasedonoptionpricingtheory,Europeancalloptionpricingformulaisderived.Inthecourseoffinancialinvestment,investorstypicallyshyawayfromrisks,andcontroltherisksinthefirstplace,sowefurtherriskaversioninthemarketofEuropeancalloptionspricerange.Inordertogiveinvestorsamorespecificreference.
【Keywords】stochasticprocessofcompoundPoissonprocesssharestradedoptionspricing
Alongwithrapideconomicdevelopment,avarietyoffinancialtoolscontinuetoproduce.Thecorrectvaluationoffinancialinstrumentsisanecessaryconditionforeffectivemanagementofrisk,weusedthepricesofsecuritiesdescribedingeometricBrownianmotionprocessiscontinuous.Withfairpricesandfinancialinstrumentsisthattheyarereasonableandthekey.Mathematicalfinanceis20centurieslaterdevelopedanewcrossdiscipline.Itisobservedwithauniquewaytomeetfinancialproblems,whichcombinemathematicaltoolsandfinancialproblems.Provideabasisforcreativeresearch,solvingfinancialproblemsandguidance.Throughmathematicsbuiltdie,andtheoryanalysis,andtheoryisderived,andnumericalcalculation,quantitativeanalysis,researchandanalysisfinancialtradingintheofvariousproblem,toprecisetodescriptionoutfinancialtradingprocessintheofsomebehaviorandmayofresults,whileresearchitscorrespondingofforecasttheory,reachedavoidedfinancialrisk,andachievedfinancialtradingreturnsmaximizeofpurpose,tomakesaboutfinancialtradingofdecisionmoresimpleandaccurate.
Becauseoffinancialphenomenastudiedinmathematicalfinancestronguncertainty,stochasticprocesstheoryasanimportantbranchofprobabilitytheory,andarewidelyusedinthefinancialresearch.Stochasticprocesstheoryinclude:theoryofprobabilityspaces.Poissonprocess,theupdatingprocess,discreteMarkovchainsandcontinuousparametersoftheMarkovchain,theBrowncampaign,martingalestheoryandstochasticintegration,stochasticdifferentialequations,andsoon.Inrecentdecades,theoryandapplicationsofstochasticprocesseshasbeendevelopingrapidly.Physics,automation,communicationsciences,economicsandManagementSciencesandmanyotherfieldsareactivefigureofthetheoryofstochasticprocesses.
ThisstochasticprocesstheoryofoptionpricingusingPoissonprocesstheorytothestudyofregularityofstockpricefluctuationinthestockmarket,considertheimpactoftransactionsonstockprices,stockpriceprocessmodelisconstructed.Andgivestheoptionofavoidingrisksintheinvestmentprocess.
AndthePoissonprocessconcepts
Definitions1.1randomprocess{Nt,T≥0}iscalledthecountingprocess,iftheIntimeintervals(0,t]occursinacertainevent(duetoapointonthetimelineofevents,sopeoplecalledtheevent)number.Therefore,acountingprocessmustmeet:
(1)NtTakenon-negativeintegervalues;
(2)Ifs<t,thenNs<Nt
(3)NtInR+=[0,∞)Therearecontinuousandpiecewisefetchconstants,
(4)Fors<t,Ns,t=NS-NtIsequaltothetime(s,t]thenumberofeventsoccurringin,
Saidthecountingprocess{Nt,T≥0}hasindependentincrements.Ifit'sinanyfinitenumberofdisjointeventsthatoccurinthetimeintervalofafewindependentofeachother,saidthecountingprocess{Nt,T≥0}withstationaryincrements,ifatanytimetheprobabilitydistributionofthenumberofeventsthatoccurredintheintervaldependsonlyonthelengthoftheinterval,andhasnothingtodowithitslocation.Thatforany0≤t1≤t2Ands≥0IncrementalNt1,t2AndNt1+s,t2+sHavethesameprobabilitydistribution.
Definitions1.2countingprocess{Nt,T≥0}iscalledintensity(orspeed)ThehomogeneousPoissonprocessifitmeetsthefollowingconditions:
(1)P(N0=0)=1,
(2)Hasindependentincrements.
(3)Forany0s<t,Ns,t=NS-NtWithparameter(t--s)ThePoissondistribution,which
Definitions1.3countprocess{,T≥0}iscalledthePoissonprocess,theargumentis,λ>0If
(1)N0=0
;
(2)Processeswithstationaryindependentincrements.
If
Youcanprove
Thatis,Ns+t-NtHasmeanm(t+s)m(t)ofthePoissondistribution.
Non-homogeneousPoissonprocessisimportantbecausenolongerrequiresastationaryincrements,allowingthepossibilityofeventsatcertaintimesthanothers.
Dangstrength(t)Territoriescanbenon-homogeneousPoissonprocessisregarded
③dSprobability
Typeintheαn>0,βn>0,λn>0Marketdepthcorrespondingtotherisk-neutralprobabilitycoefficientindexnsaid"neutral"(neutral).Becausetherisk-neutral,sotheexpectationsofstockyieldsequaltotheyieldsonbonds,namely:
We'vegotaEuropeanbuyingoptionpricingfor:
Four,riskavoidanceandriskcontrol
Onthestockmarket,investorsoftenAvoidRiskandriskcontrolasatoppriority,soconsiderhowtoavoidinvestmentrisksisofgreattheoreticalandpracticalsignificance.Assumetheexpectationsofstockreturnsthanyieldsonbonds,whichu-1αλEξ-(1-d)βλEξ>r
Probabilityisassumedbythemodelshowsthatastock'spricefluctuationsareasfollows:
Undertherisk-neutralprobability,accordingtothemodelassumptions,fluctuationsinstockpriceprobabilityis:
Five,modelthespecificpracticalproblemsofapplication
Select2009years6months22daysuntil2010years6months22daysofchinadotcom(stock)pricesastheresearchobject,theactualdatafromhttp://CN.finance.yahoo.corn。Theyearsharesofthestockpriceandtradingvolumedatastatisticsandanalysis,2010years6months22daysthestock'sopeningpriceof8.57,itsEuropeancalloptionexpirefor3months,2010years9months2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年航海廁所行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2024-2030年自動血壓監(jiān)測儀行業(yè)市場現(xiàn)狀供需分析及投資評估規(guī)劃分析研究報告
- 2024-2030年胎兒心臟監(jiān)護儀行業(yè)市場現(xiàn)狀供需分析及重點企業(yè)投資評估規(guī)劃分析研究報告
- 2024-2030年肉類加工設備產(chǎn)業(yè)發(fā)展分析及發(fā)展趨勢與投資前景預測報告
- 2024-2030年老年用品行業(yè)風險投資態(tài)勢及投融資策略指引報告
- 2024-2030年紅酒包裝印刷行業(yè)市場發(fā)展分析及投資發(fā)展前景研究報告
- 電子商務支付結算系統(tǒng)開發(fā)與服務合同
- 電子商務平臺營銷策略優(yōu)化服務合同
- 交通運輸工程標準施工合同
- 交通行業(yè)社保勞動合同指南
- 法制教育課件-課件
- 藥品銷售承包協(xié)議合同范本
- 初中物理培優(yōu)競賽第十二講-杠桿
- 全國科普調(diào)查報告
- 桌面云建設方案
- 2023年商標局認定的馳名商標(全部共169件)
- 心內(nèi)科常用藥物課件
- 數(shù)據(jù)與大數(shù)據(jù)課件浙教版高中信息技術必修1
- 煙酒購貨合同
- 城鎮(zhèn)燃氣經(jīng)營企業(yè)安全標準化規(guī)范詳細解讀(完整資料)
- 教育學知到章節(jié)答案智慧樹2023年宜賓學院
評論
0/150
提交評論