版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025屆河南省商丘市梁園區(qū)九上數(shù)學期末質(zhì)量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每小題3分,共30分)1.如圖,一輛小車沿傾斜角為α的斜坡向上行駛13米,已知sinα=,則小車上升的高度是:A.5米 B.6米 C.6.5米 D.7米2.一個不透明的盒子中裝有6個大小相同的乒乓球,其中4個是黃球,2個是白球.從該盒子中任意摸出一個球,摸到黃球的概率是()A. B. C. D.3.如圖,,,EF與AC交于點G,則是相似三角形共有()A.3對 B.5對 C.6對 D.8對4.點P(x﹣1,x+1)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.拋物線y=ax2+bx+c(a≠0)如圖所示,下列結(jié)論:①b2﹣4ac>0;②a+b+c=2;③abc<0;④a﹣b+c<0,其中正確的有()A.1個 B.2個 C.3個 D.4個6.如圖,線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,則端點C和D的坐標分別為()A.(2,2),(3,2) B.(2,4),(3,1)C.(2,2),(3,1) D.(3,1),(2,2)7.下列函數(shù)中,是的反比例函數(shù)()A. B. C. D.8.在中,∠C=90°,∠A=2∠B,則的值是()A. B. C. D.9.用配方法解一元二次方程,可將方程配方為A. B. C. D.10.將拋物線y=x2﹣4x﹣4向左平移3個單位,再向上平移5個單位,得到拋物線的函數(shù)表達式為()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣3二、填空題(每小題3分,共24分)11.高為7米的旗桿在水平地面上的影子長為5米,同一時刻測得附近一個建筑物的影子長30米,則此建筑物的高度為_____米.12.已知=,則的值是_______.13.如圖,AE、BE是△ABC的兩個內(nèi)角的平分線,過點A作AD⊥AE.交BE的延長線于點D.若AD=AB,BE:ED=1:2,則cos∠ABC=_____.14.分解因式:2x2﹣8=_____________15.如圖,點A、B分別在反比例函數(shù)y=(k1>0)和y=(k2<0)的圖象上,連接AB交y軸于點P,且點A與點B關(guān)于P成中心對稱.若△AOB的面積為4,則k1-k2=______.16.如圖,在平面直角坐標系中,點A是x軸正半軸上一點,菱形OABC的邊長為5,且tan∠COA=,若函數(shù)的圖象經(jīng)過頂點B,則k的值為________.17.如圖,已知在△ABC中,點D、E、F分別是邊AB、AC、BC上的點,DE//BC,EF//AB,且AD:DB=3:5,那么CF:CB等于__________.18.如圖,△ABC是等腰直角三角形,BC是斜邊,將△ABP繞點A逆時針旋轉(zhuǎn)后,能與△ACP′重合,如果AP=3,那么PP′=______.三、解答題(共66分)19.(10分)一個不透明的口袋中裝有4張卡片,卡片上分別標有數(shù)字1,﹣3,﹣5,7,這些卡片除數(shù)字外都相同,小芳從口袋中隨機抽取一張卡片,小明再從剩余的三張卡片中隨機抽取一張,請你用畫樹狀圖或列表的方法,求兩人抽到的數(shù)字符號相同的概率.20.(6分)某校3男2女共5名學生參加黃石市教育局舉辦的“我愛黃石”演講比賽.(1)若從5名學生中任意抽取3名,共有多少種不同的抽法,列出所有可能情形;(2)若抽取的3名學生中,某男生抽中,且必有1女生的概率是多少?21.(6分)如圖,在平面直角坐標系中,拋物線y=ax2+2x+c與x軸交于A(﹣1,0)B(3,0)兩點,與y軸交于點C,點D是該拋物線的頂點.(1)求拋物線的解析式和直線AC的解析式;(2)請在y軸上找一點M,使△BDM的周長最小,求出點M的坐標;(3)試探究:在拋物線上是否存在點P,使以點A,P,C為頂點,AC為直角邊的三角形是直角三角形?若存在,請求出符合條件的點P的坐標;若不存在,請說明理由.22.(8分)如圖,在△ABC中,AD是BC邊上的高,tanB=cos∠DAC.(1)求證:AC=BD;(2)若sinC=,BC=12,求△ABC的面積.23.(8分)如圖,矩形ABCD中,∠ACB=30°,將一塊直角三角板的直角頂點P放在兩對角線AC,BD的交點處,以點P為旋轉(zhuǎn)中心轉(zhuǎn)動三角板,并保證三角板的兩直角邊分別于邊AB,BC所在的直線相交,交點分別為E,F(xiàn).(1)當PE⊥AB,PF⊥BC時,如圖1,則的值為;(2)現(xiàn)將三角板繞點P逆時針旋轉(zhuǎn)α(0°<α<60°)角,如圖2,求的值;(3)在(2)的基礎(chǔ)上繼續(xù)旋轉(zhuǎn),當60°<α<90°,且使AP:PC=1:2時,如圖3,的值是否變化?證明你的結(jié)論.24.(8分)如圖,是⊙的弦,交于點,過點的直線交的延長線于點,且是⊙的切線.(1)判斷的形狀,并說明理由;(2)若,求的長;(3)設(shè)的面積是的面積是,且.若⊙的半徑為,求.25.(10分)已知為實數(shù),關(guān)于的方程有兩個實數(shù)根.(1)求實數(shù)的取值范圍.(2)若,試求的值.26.(10分)粵東農(nóng)批﹒2019球王故里五華馬拉松賽于12月1日在廣東五華舉行,組委會為了做好運動員的保障工作,沿途設(shè)置了4個補給站,分別是:A(粵東農(nóng)批)、B(奧體中心)、C(球王故里)和D(濱江中路),志愿者小明和小紅都計劃各自在這4個補給站中任意選擇一個進行補給服務,每個補給站被選擇的可能性相同.(1)小明選擇補給站C(球王故里)的概率是多少?(2)用樹狀圖或列表的方法,求小明和小紅恰好選擇同一個補給站的概率.
參考答案一、選擇題(每小題3分,共30分)1、A【分析】在,直接根據(jù)正弦的定義求解即可.【詳解】如圖:AB=13,作BC⊥AC,∵∴.故小車上升了5米,選A.【點睛】本題考查解直角三角形的應用-坡度坡角問題.解決本題的關(guān)鍵是將實際問題轉(zhuǎn)化為數(shù)學問題,構(gòu)造,在中解決問題.2、B【解析】試題解析:∵盒子中裝有6個大小相同的乒乓球,其中4個是黃球,∴摸到黃球的概率是故選B.考點:概率公式.3、C【分析】根據(jù)相似三角形的判定即可判斷.【詳解】圖中三角形有:,,,,∵,∴共有6個組合分別為:∴,,,,,故選C.【點睛】此題主要考查相似三角形的判定,解題的關(guān)鍵是熟知相似三角形的判定定理.4、D【解析】本題可以轉(zhuǎn)化為不等式組的問題,看下列不等式組哪個無解,(1)x-1>0,x+1>0,解得x>1,故x-1>0,x+1>0,點在第一象限;(2)x-1<0,x+1<0,解得x<-1,故x-1<0,x+1<0,點在第三象限;(3)x-1>0,x+1<0,無解;(4)x-1<0,x+1>0,解得-1<x<1,故x-1<0,x+1>0,點在第二象限.故點P不能在第四象限,故選D.5、D【分析】由拋物線的開口方向判斷a與1的關(guān)系,由拋物線與y軸的交點判斷c與1的關(guān)系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.【詳解】①∵拋物線與x軸有兩不同的交點,∴△=b2﹣4ac>1.故①正確;②∵拋物線y=ax2+bx+c的圖象經(jīng)過點(1,2),∴代入得a+b+c=2.故②正確;③∵根據(jù)圖示知,拋物線開口方向向上,∴a>1.又∵對稱軸x=﹣<1,∴b>1.∵拋物線與y軸交與負半軸,∴c<1,∴abc<1.故③正確;④∵當x=﹣1時,函數(shù)對應的點在x軸下方,則a﹣b+c<1,故④正確;綜上所述,正確的結(jié)論是:①②③④,共有4個.故選:D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系.會利用對稱軸的范圍求2a與b的關(guān)系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.6、C【解析】直接利用位似圖形的性質(zhì)得出對應點坐標乘以得出即可.【詳解】解:∵線段AB兩個端點的坐標分別為A(4,4),B(6,2),以原點O為位似中心,在第一象限內(nèi)將線段AB縮小為原來的后得到線段CD,∴端點的坐標為:(2,2),(3,1).故選C.【點睛】本題考查位似變換;坐標與圖形性質(zhì),數(shù)形結(jié)合思想解題是本題的解題關(guān)鍵.7、A【分析】根據(jù)形如(k為常數(shù),k≠0)的函數(shù)稱為反比例函數(shù).其中x是自變量,y是因變量,自變量x的取值范圍是不等于0的一切實數(shù).分別對各選項進行分析即可.【詳解】A.是反比例函數(shù),正確;B.是二次函數(shù),錯誤;C.是一次函數(shù),錯誤;D.,y是的反比例函數(shù),錯誤.故選:A.【點睛】本題考查了反比例函數(shù)的定義.反比例函數(shù)解析式的一般形式為(k≠0),也可轉(zhuǎn)化為y=kx-1(k≠0)的形式,特別注意不要忽略k≠0這個條件.8、C【分析】根據(jù)三角形內(nèi)角和定理求出∠A的值,運用特殊角的三角函數(shù)值計算即可.【詳解】∵∠A+∠B+∠C=180°,∠A=2∠B,∠C=90°,
∴2∠B+∠B+90°=180°,∴∠B=30°,∴∠A=60°,∴.故選:C.【點睛】本題考查了三角形內(nèi)角和定理的應用以及特殊角的三角函數(shù)值,準確掌握特殊角的三角函數(shù)值是解題關(guān)鍵.9、A【解析】試題解析:故選A.10、D【詳解】因為y=x2-4x-4=(x-2)2-8,以拋物線y=x2-4x-4的頂點坐標為(2,-8),把點(2,-8)向左平移1個單位,再向上平移5個單位所得對應點的坐標為(-1,-1),所以平移后的拋物線的函數(shù)表達式為y=(x+1)2-1.故選D.二、填空題(每小題3分,共24分)11、1【分析】根據(jù)同一時刻物體的高度與影長成比例解答即可.【詳解】解:設(shè)此建筑物的高度為x米,根據(jù)題意得:,解得:x=1.故答案為:1.【點睛】本題考查了平行投影,屬于基礎(chǔ)題型,明確同一時刻物體的高度與影長成比例是解題的關(guān)鍵.12、【分析】根據(jù)合比性質(zhì):,可得答案.【詳解】由合比性質(zhì),得,
故答案為:.【點睛】此題考查比例的性質(zhì),利用合比性質(zhì)是解題關(guān)鍵.13、【分析】取DE的中點F,連接AF,根據(jù)直角三角形斜邊中點的性質(zhì)得出AF=EF,然后證得△BAF≌△DAE,得出AE=AF,從而證得△AEF是等邊三角形,進一步證得∠ABC=60°,即可求得結(jié)論.【詳解】取DE的中點F,連接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF和△DAE中∴△BAF≌△DAE(SAS),∴AE=AF,∴△AEF是等邊三角形,∴∠AED=60°,∴∠D=30°,∵∠ABC=2∠ABD,∠ABD=∠D,∴∠ABC=60°,∴cos∠ABC=cos60°=,故答案為:.【點睛】本題考查了全等三角形的判定和性質(zhì),等邊三角形的判定和性質(zhì),正確的作出輔助線是解題的關(guān)鍵.14、2(x+2)(x﹣2)【分析】先提公因式,再運用平方差公式.【詳解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【點睛】考核知識點:因式分解.掌握基本方法是關(guān)鍵.15、1【分析】作AC⊥y軸于C,BD⊥y軸于D,如圖,先證明△ACP≌△BDP得到S△ACP=S△BDP,利用等量代換和k的幾何意義得到=S△AOC+S△BOD=×|k1|+|k2|=4,然后利用k1<0,k2>0可得到k2-k1的值.【詳解】解:作AC⊥y軸于C,BD⊥y軸于D,如圖,∵點A與點B關(guān)于P成中心對稱.
∴P點為AB的中點,
∴AP=BP,
在△ACP和△BDP中,
∴△ACP≌△BDP(AAS),
∴S△ACP=S△BDP,
∴S△AOB=S△APO+S△BPO=S△AOC+S△BOD=×|k1|+|k2|=4,∴|k1|+|k2|=1
∵k1>0,k2<0,
∴k1-k2=1.
故答案為1.【點睛】本題考查了比例系數(shù)k的幾何意義:在反比例函數(shù)y=圖象中任取一點,過這一個點向x軸和y軸分別作垂線,與坐標軸圍成的矩形的面積是定值|k|.在反比例函數(shù)的圖象上任意一點向坐標軸作垂線,這一點和垂足以及坐標原點所構(gòu)成的三角形的面積是|k|,且保持不變.也考查了反比例函數(shù)的性質(zhì).16、1【分析】作BD⊥x軸于點D,如圖,根據(jù)菱形的性質(zhì)和平行線的性質(zhì)可得∠BAD=∠COA,于是可得,在Rt△ABD中,由AB=5則可根據(jù)勾股定理求出BD和AD的長,進而可得點B的坐標,再把點B坐標代入雙曲線的解析式即可求出k.【詳解】解:作BD⊥x軸于點D,如圖,∵菱形OABC的邊長為5,∴AB=OA=5,AB∥OC,∴∠BAD=∠COA,∴在Rt△ABD中,設(shè)BD=3x,AD=4x,則根據(jù)勾股定理得:AB=5x=5,解得:x=1,∴BD=3,AD=4,∴OD=9,∴點B的坐標是(9,3),∵的圖象經(jīng)過頂點B,∴k=3×9=1.故答案為:1.【點睛】本題考查了菱形的性質(zhì)、解直角三角形、勾股定理和待定系數(shù)法求函數(shù)的解析式等知識,屬于??碱}型,熟練應用上述知識、正確求出點B的坐標是解題的關(guān)鍵.17、5:8【解析】試題解析:∴AE:EC=AD:DB=3:5,∴CE:CA=5:8,∴CF:CB=CE:CA=5:8.故答案為5:8.18、3【分析】根據(jù)旋轉(zhuǎn)的性質(zhì),可得∠BAC=∠PAP′=90°,AP=AP′,故△APP′是等腰直角三角形,由勾股定理得PP′的大?。驹斀狻拷猓焊鶕?jù)旋轉(zhuǎn)的性質(zhì),可得∠BAC=∠PAP′=90°,AP=AP′,∴△APP′是等腰直角三角形,由勾股定理得PP′=.故答案為.【點睛】本題考查了圖形的旋轉(zhuǎn)變化,旋轉(zhuǎn)得到的圖形與原圖形全等,解答時要分清旋轉(zhuǎn)角和對應線段.三、解答題(共66分)19、.【分析】畫樹狀圖展示所有12種等可能的結(jié)果數(shù),再找出兩人抽到的數(shù)字符號相同的結(jié)果數(shù),然后根據(jù)概率公式求解.【詳解】解:畫樹狀圖為:共有12種等可能的結(jié)果數(shù),其中兩人抽到的數(shù)字符號相同的結(jié)果數(shù)為4,所以兩人抽到的數(shù)字符號相同的概率=.考點:列表法與樹狀圖法.20、(1)共有10種不同的抽法,分別是:男男男,男男女,男男女,男男女,男男女,男女女,男男女,男男女,男女女,男女女;(2)【分析】(1)根據(jù)題意得出不同的抽法,再列舉出即可;(2)根據(jù)(1)的不同的抽法,找出必有1女生的情況數(shù),再根據(jù)概率公式即可得出答案.【詳解】解:(1)從5名學生中任意抽取3名,共有10種不同的抽法,分別是:男男男,男男女,男男女,男男女,男男女,男女女,男男女,男男女,男女女,男女女;(2)共有10種不同的抽法,其中必有1女生的有9種,則必有1女生的概率是.【點睛】此題考查了概率的求法,用到的知識點為:概率所求情況數(shù)與總情況數(shù)之比;解題時要認真審題,注意列舉法的合理運用.21、(1)拋物線解析式為y=﹣x2+2x+3;直線AC的解析式為y=3x+3;(2)點M的坐標為(0,3);(3)符合條件的點P的坐標為(,)或(,﹣),【解析】分析:(1)設(shè)交點式y(tǒng)=a(x+1)(x-3),展開得到-2a=2,然后求出a即可得到拋物線解析式;再確定C(0,3),然后利用待定系數(shù)法求直線AC的解析式;(2)利用二次函數(shù)的性質(zhì)確定D的坐標為(1,4),作B點關(guān)于y軸的對稱點B′,連接DB′交y軸于M,如圖1,則B′(-3,0),利用兩點之間線段最短可判斷此時MB+MD的值最小,則此時△BDM的周長最小,然后求出直線DB′的解析式即可得到點M的坐標;(3)過點C作AC的垂線交拋物線于另一點P,如圖2,利用兩直線垂直一次項系數(shù)互為負倒數(shù)設(shè)直線PC的解析式為y=-x+b,把C點坐標代入求出b得到直線PC的解析式為y=-x+3,再解方程組得此時P點坐標;當過點A作AC的垂線交拋物線于另一點P時,利用同樣的方法可求出此時P點坐標.詳解:(1)設(shè)拋物線解析式為y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴拋物線解析式為y=﹣x2+2x+3;當x=0時,y=﹣x2+2x+3=3,則C(0,3),設(shè)直線AC的解析式為y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直線AC的解析式為y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴頂點D的坐標為(1,4),作B點關(guān)于y軸的對稱點B′,連接DB′交y軸于M,如圖1,則B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此時MB+MD的值最小,而BD的值不變,∴此時△BDM的周長最小,易得直線DB′的解析式為y=x+3,當x=0時,y=x+3=3,∴點M的坐標為(0,3);(3)存在.過點C作AC的垂線交拋物線于另一點P,如圖2,∵直線AC的解析式為y=3x+3,∴直線PC的解析式可設(shè)為y=﹣x+b,把C(0,3)代入得b=3,∴直線PC的解析式為y=﹣x+3,解方程組,解得或,則此時P點坐標為(,);過點A作AC的垂線交拋物線于另一點P,直線PC的解析式可設(shè)為y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直線PC的解析式為y=﹣x﹣,解方程組,解得或,則此時P點坐標為(,﹣).綜上所述,符合條件的點P的坐標為(,)或(,﹣).點睛:本題考查了二次函數(shù)的綜合題:熟練掌握二次函數(shù)圖象上點的坐標特征和二次函數(shù)的性質(zhì);會利用待定系數(shù)法求函數(shù)解析式,理解兩直線垂直時一次項系數(shù)的關(guān)系,通過解方程組求把兩函數(shù)的交點坐標;理解坐標與圖形性質(zhì),會運用兩點之間線段最短解決最短路徑問題;會運用分類討論的思想解決數(shù)學問題.22、(1)證明見解析;(2)△ABC的面積為42.【分析】(1)在直角三角形中,表示,根據(jù)它們相等,即可得出結(jié)論(2)利用和勾股定理表示出線段長,根據(jù),求出長【詳解】(1)∵AD是BC上的高∴AD⊥BC.∴∠ADB=90°,∠ADC=90°.在Rt△ABD和Rt△ADC中,∵=,=又已知∴=.∴AC=BD.(2)在Rt△ADC中,,故可設(shè)AD=1k,AC=13k.∴CD==5k.∵BC=BD+CD,又AC=BD,∴BC=13k+5k=12k由已知BC=1,∴12k=1.∴k=.∴AD=1k=1=2.23、(1);(2);(3)變化.證明見解析.【分析】(1)證明△APE≌△PCF,得PE=CF;在Rt△PCF中,解直角三角形求得的值即可;(2)如答圖1所示,作輔助線,構(gòu)造直角三角形,證明△PME∽△PNF,并利用(1)的結(jié)論,求得的值;(3)如答圖2所示,作輔助線,構(gòu)造直角三角形,首先證明△APM∽△PCN,求得;然后證明△PME∽△PNF,從而由求得的值.與(1)(2)問相比較,的值發(fā)生了變化.【詳解】(1)∵矩形ABCD,∴AB⊥BC,PA=PC.∵PE⊥AB,BC⊥AB,∴PE∥BC.∴∠APE=∠PCF.∵PF⊥BC,AB⊥BC,∴PF∥AB.∴∠PAE=∠CPF.∵在△APE與△PCF中,∠PAE=∠CPF,PA=PC,∠APE=∠PCF,∴△APE≌△PCF(ASA).∴PE=CF.在Rt△PCF中,,∴;(2)如答圖1,過點P作PM⊥AB于點M,PN⊥BC于點N,則PM⊥PN.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN.又∵∠PME=∠PNF=90°,∴△PME∽△PNF.∴.由(1)知,,∴.(3)變化.證明如下:如答圖2,過點P作PM⊥AB于點M,PN⊥BC于點N,則PM⊥PN,PM∥BC,PN∥AB.∵PM∥BC,PN∥AB,∴∠APM=∠PCN,∠PAM=∠CPN.∴△APM∽△PCN.∴,得CN=2PM.在Rt△PCN中,,∴.∵PM⊥PN,PE⊥PF,∴∠EPM=∠FPN.又∵∠PME=∠PNF=90°,∴△PME∽△PNF.∴.∴的值發(fā)生變化.2
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 《室內(nèi)設(shè)計空間組織》課件
- 《電源系統(tǒng)的建?!氛n件
- 《病理心理學》課件
- 通史版2025屆高考歷史二輪總復習第二編考前突破突破一史學入門與史料研讀課件
- 大學生網(wǎng)絡安全教育
- 單位管理制度集合大合集人員管理十篇
- 單位管理制度合并選集【職員管理篇】十篇
- 單位管理制度分享匯編職員管理篇
- 單位管理制度分享大全職工管理
- 單位管理制度范例選集職工管理篇十篇
- 初中體育教案【完整版】七年級
- 2024-2030年中國城市供熱行業(yè)市場前景預測及發(fā)展趨勢預判報告
- 2024年計算機二級MS Office考試題庫500題(含答案)
- 人教版七年級上冊《生物》期末試卷(完整)
- 福建中考英語作文15分評分標準
- 智慧磐石工程建設(shè)方案
- 等保2完整版本.0介紹及建設(shè)流程
- 蘇教版科學六年級上冊期末測試卷含完整答案(各地真題)
- 市場法評估企業(yè)價值
- DL-T 1476-2023 電力安全工器具預防性試驗規(guī)程
- 通信安全員ABC證報名考試題庫及答案
評論
0/150
提交評論