版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
咸寧市通城縣重點(diǎn)達(dá)標(biāo)名校2023-2024學(xué)年十校聯(lián)考最后數(shù)學(xué)試題請(qǐng)考生注意:1.請(qǐng)用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請(qǐng)用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀(guān)題的答案寫(xiě)在答題紙相應(yīng)的答題區(qū)內(nèi)。寫(xiě)在試題卷、草稿紙上均無(wú)效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項(xiàng)》,按規(guī)定答題。一、選擇題(共10小題,每小題3分,共30分)1.如圖,在△ABC中,∠C=90°,∠B=10°,以A為圓心,任意長(zhǎng)為半徑畫(huà)弧交AB于M、AC于N,再分別以M、N為圓心,大于12MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,連接AP并延長(zhǎng)交BC于D①AD是∠BAC的平分線(xiàn);②∠ADC=60°;③點(diǎn)D在AB的中垂線(xiàn)上;④S△ACD:S△ACB=1:1.其中正確的有()A.只有①②③ B.只有①②④ C.只有①③④ D.①②③④2.某公司有11名員工,他們所在部門(mén)及相應(yīng)每人所創(chuàng)年利潤(rùn)如下表所示,已知這11個(gè)數(shù)據(jù)的中位數(shù)為1.部門(mén)人數(shù)每人所創(chuàng)年利潤(rùn)(單位:萬(wàn)元)11938743這11名員工每人所創(chuàng)年利潤(rùn)的眾數(shù)、平均數(shù)分別是A.10,1 B.7,8 C.1,6.1 D.1,63.如圖所示的幾何體的俯視圖是()A. B. C. D.4.已知,C是線(xiàn)段AB的黃金分割點(diǎn),AC<BC,若AB=2,則BC=()A.3﹣ B.(+1) C.﹣1 D.(﹣1)5.如圖所示,在平面直角坐標(biāo)系中,拋物線(xiàn)y=-x2+2x的頂點(diǎn)為A點(diǎn),且與x軸的正半軸交于點(diǎn)B,P點(diǎn)為該拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),則OP+AP的最小值為().A.3 B. C. D.6.關(guān)于x的一元二次方程x2+2x+k+1=0的兩個(gè)實(shí)根x1,x2,滿(mǎn)足x1+x2﹣x1x2<﹣1,則k的取值范圍在數(shù)軸上表示為()A. B.C. D.7.圖1~圖4是四個(gè)基本作圖的痕跡,關(guān)于四條弧①、②、③、④有四種說(shuō)法:?、偈且設(shè)為圓心,任意長(zhǎng)為半徑所畫(huà)的??;?、谑且訮為圓心,任意長(zhǎng)為半徑所畫(huà)的??;?、凼且訟為圓心,任意長(zhǎng)為半徑所畫(huà)的??;弧④是以P為圓心,任意長(zhǎng)為半徑所畫(huà)的弧;其中正確說(shuō)法的個(gè)數(shù)為()A.4 B.3 C.2 D.18.下列命題是真命題的是()A.一組對(duì)邊平行,另一組對(duì)邊相等的四邊形是平行四邊形B.兩條對(duì)角線(xiàn)相等的四邊形是平行四邊形C.兩組對(duì)邊分別相等的四邊形是平行四邊形D.平行四邊形既是中心對(duì)稱(chēng)圖形,又是軸對(duì)稱(chēng)圖形9.如果一組數(shù)據(jù)6、7、x、9、5的平均數(shù)是2x,那么這組數(shù)據(jù)的方差為()A.4 B.3 C.2 D.110.如圖,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位線(xiàn),延長(zhǎng)DE交△ABC的外角∠ACM的平分線(xiàn)于點(diǎn)F,則線(xiàn)段DF的長(zhǎng)為()A.7 B.8 C.9 D.10二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11.若4a+3b=1,則8a+6b-3的值為_(kāi)_____.12.計(jì)算:sin30°﹣(﹣3)0=_____.13.一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動(dòng)一個(gè)半徑為10cm的圓盤(pán),如圖所示,AB與CD水平,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤(pán)從A點(diǎn)滾動(dòng)到D點(diǎn)其圓心所經(jīng)過(guò)的路線(xiàn)長(zhǎng)為_(kāi)___cm.14.如圖,以點(diǎn)O為圓心的兩個(gè)圓中,大圓的弦AB切小圓于點(diǎn)C,OA交小圓于點(diǎn)D,若OD=2,tan∠OAB=,則AB的長(zhǎng)是________.15.如圖,在邊長(zhǎng)為1的正方形格點(diǎn)圖中,B、D、E為格點(diǎn),則∠BAC的正切值為_(kāi)____.16.已知關(guān)于x的方程x2+mx+4=0有兩個(gè)相等的實(shí)數(shù)根,則實(shí)數(shù)m的值是______.三、解答題(共8題,共72分)17.(8分)如圖所示,正方形網(wǎng)格中,△ABC為格點(diǎn)三角形(即三角形的頂點(diǎn)都在格點(diǎn)上).把△ABC沿BA方向平移后,點(diǎn)A移到點(diǎn)A1,在網(wǎng)格中畫(huà)出平移后得到的△A1B1C1;把△A1B1C1繞點(diǎn)A1按逆時(shí)針?lè)较蛐D(zhuǎn)90°,在網(wǎng)格中畫(huà)出旋轉(zhuǎn)后的△A1B2C2;如果網(wǎng)格中小正方形的邊長(zhǎng)為1,求點(diǎn)B經(jīng)過(guò)(1)、(2)變換的路徑總長(zhǎng).18.(8分)如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù)(x<0)的圖象交于點(diǎn)B(﹣2,n),過(guò)點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)D(3﹣3n,1)是該反比例函數(shù)圖象上一點(diǎn).求m的值;若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達(dá)式.19.(8分)如圖,一次函數(shù)y=ax﹣1的圖象與反比例函數(shù)的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=,tan∠AOC=(1)求a,k的值及點(diǎn)B的坐標(biāo);(2)觀(guān)察圖象,請(qǐng)直接寫(xiě)出不等式ax﹣1≥的解集;(3)在y軸上存在一點(diǎn)P,使得△PDC與△ODC相似,請(qǐng)你求出P點(diǎn)的坐標(biāo).20.(8分)如圖,已知拋物線(xiàn)與x軸負(fù)半軸相交于點(diǎn)A,與y軸正半軸相交于點(diǎn)B,,直線(xiàn)l過(guò)A、B兩點(diǎn),點(diǎn)D為線(xiàn)段AB上一動(dòng)點(diǎn),過(guò)點(diǎn)D作軸于點(diǎn)C,交拋物線(xiàn)于點(diǎn)
E.(1)求拋物線(xiàn)的解析式;(2)若拋物線(xiàn)與x軸正半軸交于點(diǎn)F,設(shè)點(diǎn)D的橫坐標(biāo)為x,四邊形FAEB的面積為S,請(qǐng)寫(xiě)出S與x的函數(shù)關(guān)系式,并判斷S是否存在最大值,如果存在,求出這個(gè)最大值;并寫(xiě)出此時(shí)點(diǎn)E的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.(3)連接BE,是否存在點(diǎn)D,使得和相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,說(shuō)明理由.21.(8分)某漁業(yè)養(yǎng)殖場(chǎng),對(duì)每天打撈上來(lái)的魚(yú),一部分由工人運(yùn)到集貿(mào)市場(chǎng)按10元/斤銷(xiāo)售,剩下的全部按3元/斤的購(gòu)銷(xiāo)合同直接包銷(xiāo)給外面的某公司:養(yǎng)殖場(chǎng)共有30名工人,每名工人只能參與打撈與到集貿(mào)市場(chǎng)銷(xiāo)售中的一項(xiàng)工作,且每人每天可以打撈魚(yú)100斤或銷(xiāo)售魚(yú)50斤,設(shè)安排x名員工負(fù)責(zé)打撈,剩下的負(fù)責(zé)到市場(chǎng)銷(xiāo)售.(1)若養(yǎng)殖場(chǎng)一天的總銷(xiāo)售收入為y元,求y與x的函數(shù)關(guān)系式;(2)若合同要求每天銷(xiāo)售給外面某公司的魚(yú)至少200斤,在遵守合同的前提下,問(wèn)如何分配工人,才能使一天的銷(xiāo)售收入最大?并求出最大值.22.(10分)先化簡(jiǎn),后求值:(1﹣)÷(),其中a=1.23.(12分)先化簡(jiǎn),再求值.(2x+3)(2x﹣3)﹣4x(x﹣1)+(x﹣2)2,其中x=﹣.24.如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線(xiàn)過(guò)點(diǎn)C,且對(duì)稱(chēng)軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.(1)求拋物線(xiàn)的解析式.(2)在圖①中,若點(diǎn)P在線(xiàn)段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?(3)在圖②中,若點(diǎn)P在對(duì)稱(chēng)軸上從點(diǎn)A開(kāi)始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過(guò)點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線(xiàn)于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
①根據(jù)作圖過(guò)程可判定AD是∠BAC的角平分線(xiàn);②利用角平分線(xiàn)的定義可推知∠CAD=10°,則由直角三角形的性質(zhì)來(lái)求∠ADC的度數(shù);③利用等角對(duì)等邊可以證得△ADB是等腰三角形,由等腰三角形的“三合一”性質(zhì)可以證明點(diǎn)D在AB的中垂線(xiàn)上;④利用10°角所對(duì)的直角邊是斜邊的一半,三角形的面積計(jì)算公式來(lái)求兩個(gè)三角形面積之比.【詳解】①根據(jù)作圖過(guò)程可知AD是∠BAC的角平分線(xiàn),①正確;②如圖,在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°,又∵AD是∠BAC的平分線(xiàn),∴∠1=∠2=12∠CAB=10°,∴∠1=90°-∠2=60°,即∠ADC=60°,②正確;③∵∠1=∠B=10°,∴AD=BD,∴點(diǎn)D在AB的中垂線(xiàn)上,③正確;④如圖,∵在直角△ACD中,∠2=10°,∴CD=12AD,∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC?CD=14AC?AD.∴S△ABC=12AC?BC=12AC?32AD=3【點(diǎn)睛】本題主要考查尺規(guī)作角平分線(xiàn)、角平分線(xiàn)的性質(zhì)定理、三角形的外角以及等腰三角形的性質(zhì),熟練掌握有關(guān)知識(shí)點(diǎn)是解答的關(guān)鍵.2、D【解析】
根據(jù)中位數(shù)的定義即可求出x的值,然后根據(jù)眾數(shù)的定義和平均數(shù)公式計(jì)算即可.【詳解】解:這11個(gè)數(shù)據(jù)的中位數(shù)是第8個(gè)數(shù)據(jù),且中位數(shù)為1,,則這11個(gè)數(shù)據(jù)為3、3、3、3、1、1、1、1、1、1、1、8、8、8、19,所以這組數(shù)據(jù)的眾數(shù)為1萬(wàn)元,平均數(shù)為萬(wàn)元.故選:.【點(diǎn)睛】此題考查的是中位數(shù)、眾數(shù)和平均數(shù),掌握中位數(shù)的定義、眾數(shù)的定義和平均數(shù)公式是解決此題的關(guān)鍵.3、D【解析】
找到從上面看所得到的圖形即可,注意所有看到的棱都應(yīng)表現(xiàn)在俯視圖中.【詳解】從上往下看,該幾何體的俯視圖與選項(xiàng)D所示視圖一致.故選D.【點(diǎn)睛】本題考查了簡(jiǎn)單組合體三視圖的知識(shí),俯視圖是從物體的上面看得到的視圖.4、C【解析】
根據(jù)黃金分割點(diǎn)的定義,知BC為較長(zhǎng)線(xiàn)段;則BC=AB,代入數(shù)據(jù)即可得出BC的值.【詳解】解:由于C為線(xiàn)段AB=2的黃金分割點(diǎn),且AC<BC,BC為較長(zhǎng)線(xiàn)段;
則BC=2×=-1.
故答案為:-1.【點(diǎn)睛】本題考查了黃金分割,應(yīng)該識(shí)記黃金分割的公式:較短的線(xiàn)段=原線(xiàn)段的倍,較長(zhǎng)的線(xiàn)段=原線(xiàn)段的倍.5、A【解析】
連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,解方程得到-x2+2x=0得到點(diǎn)B,再利用配方法得到點(diǎn)A,得到OA的長(zhǎng)度,判斷△AOB為等邊三角形,然后利用∠OAP=30°得到PH=AP,利用拋物線(xiàn)的性質(zhì)得到PO=PB,再根據(jù)兩點(diǎn)之間線(xiàn)段最短求解.【詳解】連接AO,AB,PB,作PH⊥OA于H,BC⊥AO于C,如圖當(dāng)y=0時(shí)-x2+2x=0,得x1=0,x2=2,所以B(2,0),由于y=-x2+2x=-(x-)2+3,所以A(,3),所以AB=AO=2,AO=AB=OB,所以三角形AOB為等邊三角形,∠OAP=30°得到PH=AP,因?yàn)锳P垂直平分OB,所以PO=PB,所以O(shè)P+AP=PB+PH,所以當(dāng)H,P,B共線(xiàn)時(shí),PB+PH最短,而B(niǎo)C=AB=3,所以最小值為3.故選A.【點(diǎn)睛】本題考查的是二次函數(shù)的綜合運(yùn)用,熟練掌握二次函數(shù)的性質(zhì)和最短途徑的解決方法是解題的關(guān)鍵.6、D【解析】試題分析:根據(jù)根的判別式和根與系數(shù)的關(guān)系列出不等式,求出解集.解:∵關(guān)于x的一元二次方程x2+2x+k+1=0有兩個(gè)實(shí)根,∴△≥0,∴4﹣4(k+1)≥0,解得k≤0,∵x1+x2=﹣2,x1?x2=k+1,∴﹣2﹣(k+1)<﹣1,解得k>﹣2,不等式組的解集為﹣2<k≤0,在數(shù)軸上表示為:,故選D.點(diǎn)評(píng):本題考查了根的判別式、根與系數(shù)的關(guān)系,在數(shù)軸上找到公共部分是解題的關(guān)鍵.7、C【解析】
根據(jù)基本作圖的方法即可得到結(jié)論.【詳解】解:(1)弧①是以O(shè)為圓心,任意長(zhǎng)為半徑所畫(huà)的弧,正確;(2)?、谑且訮為圓心,大于點(diǎn)P到直線(xiàn)的距離為半徑所畫(huà)的弧,錯(cuò)誤;(3)弧③是以A為圓心,大于AB的長(zhǎng)為半徑所畫(huà)的弧,錯(cuò)誤;(4)弧④是以P為圓心,任意長(zhǎng)為半徑所畫(huà)的弧,正確.故選C.【點(diǎn)睛】此題主要考查了基本作圖,解決問(wèn)題的關(guān)鍵是掌握基本作圖的方法.8、C【解析】
根據(jù)平行四邊形的五種判定定理(平行四邊形的判定方法:①兩組對(duì)邊分別平行的四邊形;②兩組對(duì)角分別相等的四邊形;③兩組對(duì)邊分別相等的四邊形;④一組對(duì)邊平行且相等的四邊形;⑤對(duì)角線(xiàn)互相平分的四邊形)和平行四邊形的性質(zhì)進(jìn)行判斷.【詳解】A、一組對(duì)邊平行,另一組對(duì)邊相等的四邊形不是平行四邊形;故本選項(xiàng)錯(cuò)誤;B、兩條對(duì)角線(xiàn)互相平分的四邊形是平行四邊形.故本選項(xiàng)錯(cuò)誤;C、兩組對(duì)邊分別相等的四邊形是平行四邊形.故本選項(xiàng)正確;D、平行四邊形不是軸對(duì)稱(chēng)圖形,是中心對(duì)稱(chēng)圖形.故本選項(xiàng)錯(cuò)誤;故選:C.【點(diǎn)睛】考查了平行四邊形的判定與性質(zhì).平行四邊形的判定方法共有五種,應(yīng)用時(shí)要認(rèn)真領(lǐng)會(huì)它們之間的聯(lián)系與區(qū)別,同時(shí)要根據(jù)條件合理、靈活地選擇方法.9、A【解析】分析:先根據(jù)平均數(shù)的定義確定出x的值,再根據(jù)方差公式進(jìn)行計(jì)算即可求出答案.詳解:根據(jù)題意,得:=2x解得:x=3,則這組數(shù)據(jù)為6、7、3、9、5,其平均數(shù)是6,所以這組數(shù)據(jù)的方差為[(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,故選A.點(diǎn)睛:此題考查了平均數(shù)和方差的定義.平均數(shù)是所有數(shù)據(jù)的和除以數(shù)據(jù)的個(gè)數(shù).方差是一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù).10、B【解析】
根據(jù)三角形中位線(xiàn)定理求出DE,得到DF∥BM,再證明EC=EF=AC,由此即可解決問(wèn)題.【詳解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位線(xiàn),∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故選B.二、填空題(本大題共6個(gè)小題,每小題3分,共18分)11、-1【解析】
先求出8a+6b的值,然后整體代入進(jìn)行計(jì)算即可得解.【詳解】∵4a+3b=1,∴8a+6b=2,8a+6b-3=2-3=-1;故答案為:-1.【點(diǎn)睛】本題考查了代數(shù)式求值,整體思想的利用是解題的關(guān)鍵.12、-【解析】
sin30°=,a0=1(a≠0)【詳解】解:原式=-1=-故答案為:-.【點(diǎn)睛】本題考查了30°的角的正弦值和非零數(shù)的零次冪.熟記是關(guān)鍵.13、【解析】試題解析:如下圖,畫(huà)出圓盤(pán)滾動(dòng)過(guò)程中圓心移動(dòng)路線(xiàn)的分解圖象.可以得出圓盤(pán)滾動(dòng)過(guò)程中圓心走過(guò)的路線(xiàn)由線(xiàn)段OO1,線(xiàn)段O1O2,圓弧,線(xiàn)段O3O4四部分構(gòu)成.其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.∵BC與AB延長(zhǎng)線(xiàn)的夾角為60°,O1是圓盤(pán)在AB上滾動(dòng)到與BC相切時(shí)的圓心位置,∴此時(shí)⊙O1與AB和BC都相切.則∠O1BE=∠O1BF=60度.此時(shí)Rt△O1BE和Rt△O1BF全等,在Rt△O1BE中,BE=cm.∴OO1=AB-BE=(60-)cm.∵BF=BE=cm,∴O1O2=BC-BF=(40-)cm.∵AB∥CD,BC與水平夾角為60°,∴∠BCD=120度.又∵∠O2CB=∠O3CD=90°,∴∠O2CO3=60度.則圓盤(pán)在C點(diǎn)處滾動(dòng),其圓心所經(jīng)過(guò)的路線(xiàn)為圓心角為60°且半徑為10cm的圓弧.∴的長(zhǎng)=×2π×10=πcm.∵四邊形O3O4DC是矩形,∴O3O4=CD=40cm.綜上所述,圓盤(pán)從A點(diǎn)滾動(dòng)到D點(diǎn),其圓心經(jīng)過(guò)的路線(xiàn)長(zhǎng)度是:(60-)+(40-)+π+40=(140-+π)cm.14、8【解析】
如圖,連接OC,在在Rt△ACO中,由tan∠OAB=,求出AC即可解決問(wèn)題.【詳解】解:如圖,連接OC.∵AB是⊙O切線(xiàn),∴OC⊥AB,AC=BC,在Rt△ACO中,∵∠ACO=90°,OC=OD=2tan∠OAB=,∴,∴AC=4,∴AB=2AC=8,故答案為8【點(diǎn)睛】本題考查切線(xiàn)的性質(zhì)、垂徑定理、勾股定理等知識(shí),解題的關(guān)鍵是學(xué)會(huì)添加常用輔助線(xiàn),構(gòu)造直角三角形,屬于中考常考題型.15、【解析】
根據(jù)圓周角定理可得∠BAC=∠BDC,然后求出tan∠BDC的值即可.【詳解】由圖可得,∠BAC=∠BDC,∵⊙O在邊長(zhǎng)為1的網(wǎng)格格點(diǎn)上,∴BE=3,DB=4,則tan∠BDC==∴tan∠BAC=故答案為【點(diǎn)睛】本題考查的知識(shí)點(diǎn)是圓周角定理及其推論及解直角三角形,解題的關(guān)鍵是熟練的掌握?qǐng)A周角定理及其推論及解直角三角形.16、±4【解析】分析:由方程有兩個(gè)相等的實(shí)數(shù)根,得到根的判別式等于0,列出關(guān)于m的方程,求出方程的解即可得到m的值.詳解:∵方程有兩個(gè)相等的實(shí)數(shù)根,∴解得:故答案為點(diǎn)睛:考查一元二次方程根的判別式,當(dāng)時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.當(dāng)時(shí),方程有兩個(gè)相等的實(shí)數(shù)根.當(dāng)時(shí),方程沒(méi)有實(shí)數(shù)根.三、解答題(共8題,共72分)17、(1)(2)作圖見(jiàn)解析;(3).【解析】
(1)利用平移的性質(zhì)畫(huà)圖,即對(duì)應(yīng)點(diǎn)都移動(dòng)相同的距離.(2)利用旋轉(zhuǎn)的性質(zhì)畫(huà)圖,對(duì)應(yīng)點(diǎn)都旋轉(zhuǎn)相同的角度.(3)利用勾股定理和弧長(zhǎng)公式求點(diǎn)B經(jīng)過(guò)(1)、(2)變換的路徑總長(zhǎng).【詳解】解:(1)如答圖,連接AA1,然后從C點(diǎn)作AA1的平行線(xiàn)且A1C1=AC,同理找到點(diǎn)B1,分別連接三點(diǎn),△A1B1C1即為所求.(2)如答圖,分別將A1B1,A1C1繞點(diǎn)A1按逆時(shí)針?lè)较蛐D(zhuǎn)90°,得到B2,C2,連接B2C2,△A1B2C2即為所求.(3)∵,∴點(diǎn)B所走的路徑總長(zhǎng)=.考點(diǎn):1.網(wǎng)格問(wèn)題;2.作圖(平移和旋轉(zhuǎn)變換);3.勾股定理;4.弧長(zhǎng)的計(jì)算.18、(1)-6;(2).【解析】
(1)由點(diǎn)B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上可得﹣2n=3﹣3n,即可得出答案;(2)由(1)得出B、D的坐標(biāo),作DE⊥BC.延長(zhǎng)DE交AB于點(diǎn)F,證△DBE≌△FBE得DE=FE=4,即可知點(diǎn)F(2,1),再利用待定系數(shù)法求解可得.【詳解】解:(1)∵點(diǎn)B(﹣2,n)、D(3﹣3n,1)在反比例函數(shù)(x<0)的圖象上,∴,解得:;(2)由(1)知反比例函數(shù)解析式為,∵n=3,∴點(diǎn)B(﹣2,3)、D(﹣6,1),如圖,過(guò)點(diǎn)D作DE⊥BC于點(diǎn)E,延長(zhǎng)DE交AB于點(diǎn)F,在△DBE和△FBE中,∵∠DBE=∠FBE,BE=BE,∠BED=∠BEF=90°,∴△DBE≌△FBE(ASA),∴DE=FE=4,∴點(diǎn)F(2,1),將點(diǎn)B(﹣2,3)、F(2,1)代入y=kx+b,∴,解得:,∴.【點(diǎn)睛】本題主要考查了反比例函數(shù)與一次函數(shù)的綜合問(wèn)題,解題的關(guān)鍵是能借助全等三角形確定一些相關(guān)線(xiàn)段的長(zhǎng).19、(1)a=,k=3,B(-,-2)(2)﹣≤x<0或x≥3;(3)(0,)或(0,0)【解析】
1)過(guò)A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,根據(jù)tan∠AOC的值,設(shè)AE=x,得到OE=3x,再由OA的長(zhǎng),利用勾股定理列出關(guān)于x的方程,求出方程的解得到x的值,確定出A坐標(biāo),將A坐標(biāo)代入一次函數(shù)解析式求出a的值,代入反比例解析式求出k的值,聯(lián)立一次函數(shù)與反比例函數(shù)解析式求出B的坐標(biāo);(2)由A與B交點(diǎn)橫坐標(biāo),根據(jù)函數(shù)圖象確定出所求不等式的解集即可;(3)顯然P與O重合時(shí),滿(mǎn)足△PDC與△ODC相似;當(dāng)PC⊥CD,即∠PCD=時(shí),滿(mǎn)足三角形PDC與三角形CDO相等,利用同角的余角相等得到一對(duì)角相等,再由一對(duì)直角相等得到三角形PCO與三角形CDO相似,由相似得比例,根據(jù)OD,OC的長(zhǎng)求出OP的長(zhǎng),即可確定出P的坐標(biāo).【詳解】解:(1)過(guò)A作AE⊥x軸,交x軸于點(diǎn)E,在Rt△AOE中,OA=,tan∠AOC=,設(shè)AE=x,則OE=3x,根據(jù)勾股定理得:OA2=OE2+AE2,即10=9x2+x2,解得:x=1或x=﹣1(舍去),∴OE=3,AE=1,即A(3,1),將A坐標(biāo)代入一次函數(shù)y=ax﹣1中,得:1=3a﹣1,即a=,將A坐標(biāo)代入反比例解析式得:1=,即k=3,聯(lián)立一次函數(shù)與反比例解析式得:,消去y得:x﹣1=,解得:x=﹣或x=3,將x=﹣代入得:y=﹣1﹣1=﹣2,即B(﹣,﹣2);(2)由A(3,1),B(﹣,﹣2),根據(jù)圖象得:不等式x﹣1≥的解集為﹣≤x<0或x≥3;(3)顯然P與O重合時(shí),△PDC∽△ODC;當(dāng)PC⊥CD,即∠PCD=90°時(shí),∠PCO+∠DCO=90°,∵∠PCD=∠COD=90°,∠PCD=∠CDO,∴△PDC∽△CDO,∵∠PCO+∠CPO=90°,∴∠DCO=∠CPO,∵∠POC=∠COD=90°,∴△PCO∽△CDO,∴=,對(duì)于一次函數(shù)解析式y(tǒng)=x﹣1,令x=0,得到y(tǒng)=﹣1;令y=0,得到x=,∴C(,0),D(0,﹣1),即OC=,OD=1,∴=,即OP=,此時(shí)P坐標(biāo)為(0,),綜上,滿(mǎn)足題意P的坐標(biāo)為(0,)或(0,0).【點(diǎn)睛】此題屬于反比例函數(shù)綜合題,涉及的知識(shí)有:待定系數(shù)法確定函數(shù)解析式,一次函數(shù)與反比例函數(shù)的交點(diǎn)問(wèn)題,坐標(biāo)與圖形性質(zhì),勾股定理,銳角三角函數(shù)定義,相似三角形的判定與性質(zhì),利用了數(shù)形結(jié)合的思想,熟練運(yùn)用數(shù)形結(jié)合思想是解題的關(guān)鍵.20、(1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.(3)存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.【解析】
利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)A、B的坐標(biāo),結(jié)合即可得出關(guān)于a的一元一次方程,解之即可得出結(jié)論;由點(diǎn)A、B的坐標(biāo)可得出直線(xiàn)AB的解析式待定系數(shù)法,由點(diǎn)D的橫坐標(biāo)可得出點(diǎn)D、E的坐標(biāo),進(jìn)而可得出DE的長(zhǎng)度,利用三角形的面積公式結(jié)合即可得出S關(guān)于x的函數(shù)關(guān)系式,再利用二次函數(shù)的性質(zhì)即可解決最值問(wèn)題;由、,利用相似三角形的判定定理可得出:若要和相似,只需或,設(shè)點(diǎn)D的坐標(biāo)為,則點(diǎn)E的坐標(biāo)為,進(jìn)而可得出DE、BD的長(zhǎng)度當(dāng)時(shí),利用等腰直角三角形的性質(zhì)可得出,進(jìn)而可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論;當(dāng)時(shí),由點(diǎn)B的縱坐標(biāo)可得出點(diǎn)E的縱坐標(biāo)為4,結(jié)合點(diǎn)E的坐標(biāo)即可得出關(guān)于m的一元二次方程,解之取其非零值即可得出結(jié)論綜上即可得出結(jié)論.【詳解】當(dāng)時(shí),有,解得:,,點(diǎn)A的坐標(biāo)為.當(dāng)時(shí),,點(diǎn)B的坐標(biāo)為.,,解得:,拋物線(xiàn)的解析式為.點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,直線(xiàn)AB的解析式為.點(diǎn)D的橫坐標(biāo)為x,則點(diǎn)D的坐標(biāo)為,點(diǎn)E的坐標(biāo)為,如圖.點(diǎn)F的坐標(biāo)為,點(diǎn)A的坐標(biāo)為,點(diǎn)B的坐標(biāo)為,,,,.,當(dāng)時(shí),S取最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為,與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.,,若要和相似,只需或如圖.設(shè)點(diǎn)D的坐標(biāo)為,則點(diǎn)E的坐標(biāo)為,,當(dāng)時(shí),,,,為等腰直角三角形.,即,解得:舍去,,點(diǎn)D的坐標(biāo)為;當(dāng)時(shí),點(diǎn)E的縱坐標(biāo)為4,,解得:,舍去,點(diǎn)D的坐標(biāo)為.綜上所述:存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.故答案為:(1);(2)與x的函數(shù)關(guān)系式為,S存在最大值,最大值為18,此時(shí)點(diǎn)E的坐標(biāo)為.(3)存在點(diǎn)D,使得和相似,此時(shí)點(diǎn)D的坐標(biāo)為或.【點(diǎn)睛】本題考查了二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征、三角形的面積、二次函數(shù)的性質(zhì)、相似三角形的判定、等腰直角三角形以及解一元二次方程,解題的關(guān)鍵是:利用二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求出點(diǎn)A、B的坐標(biāo);利用三角形的面積找出S關(guān)于x的函數(shù)關(guān)系式;分及兩種情況求出點(diǎn)D的坐標(biāo).21、(1)y=﹣50x+10500;(2)安排12人打撈,18人銷(xiāo)售可使銷(xiāo)售利潤(rùn)最大,最大銷(xiāo)售利潤(rùn)為9900元.【解析】
(1)根據(jù)題意可以得到y(tǒng)關(guān)于x的函數(shù)解析式,本題得以解決;(2)根據(jù)題意可以得到x的不等式組,從而可以求得x的取值范圍,從而可以得到y(tǒng)的最大值,本題得以解決.【詳解】(1)由題意可得,y=10×50(30﹣x)+3[100x﹣50(30﹣x)]=﹣50x+10500,即y與x的函數(shù)關(guān)系式為y=﹣50x+10500;(2)由題意可得,,得x,∵x是整數(shù),y=﹣50x+10500,∴當(dāng)x=12時(shí),y取得最大值,此時(shí),y=﹣50×12+10500=9900,30﹣x=18,答:安排12人打撈,18人銷(xiāo)售可使銷(xiāo)售利潤(rùn)最大,最大銷(xiāo)售利潤(rùn)為9900元.【點(diǎn)睛】本題考查一次函數(shù)的應(yīng)用、一元一次不等式的應(yīng)用,解答本題的關(guān)鍵是明確題意,利用函數(shù)和不等式的性質(zhì)解
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 六盤(pán)水職業(yè)技術(shù)學(xué)院《典型零件的工藝設(shè)計(jì)》2023-2024學(xué)年第一學(xué)期期末試卷
- 金肯職業(yè)技術(shù)學(xué)院《微機(jī)原理含實(shí)驗(yàn)》2023-2024學(xué)年第一學(xué)期期末試卷
- 新蘇教版一年級(jí)下冊(cè)數(shù)學(xué)第1單元第3課時(shí)《8、7加幾》作業(yè)
- 懷化學(xué)院《影視創(chuàng)作前沿技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 湖北理工學(xué)院《人力資源管理咨詢(xún)與診斷》2023-2024學(xué)年第一學(xué)期期末試卷
- 資陽(yáng)口腔職業(yè)學(xué)院《測(cè)試與傳感器技術(shù)》2023-2024學(xué)年第一學(xué)期期末試卷
- 小學(xué)黨員聯(lián)系群眾、服務(wù)群眾制度
- 長(zhǎng)沙學(xué)院《材料加工過(guò)程多尺度模擬》2023-2024學(xué)年第一學(xué)期期末試卷
- 寒露節(jié)氣策劃講座模板
- 職業(yè)導(dǎo)論-房地產(chǎn)經(jīng)紀(jì)人《職業(yè)導(dǎo)論》名師預(yù)測(cè)卷3
- 12G614-1砌體填充墻結(jié)構(gòu)構(gòu)造
- 蘇教版五年級(jí)上冊(cè)數(shù)學(xué)計(jì)算題大全1000道帶答案
- JT-T-1078-2016道路運(yùn)輸車(chē)輛衛(wèi)星定位系統(tǒng)視頻通信協(xié)議
- 兩家公司成立新公司合作協(xié)議書(shū)
- 小學(xué)四年級(jí)小數(shù)單位換算練習(xí)題100道
- 人教版七年級(jí)下冊(cè)數(shù)學(xué)-第五章-相交線(xiàn)與平行線(xiàn)-單元檢測(cè)題
- (正式版)HGT 22820-2024 化工安全儀表系統(tǒng)工程設(shè)計(jì)規(guī)范
- 項(xiàng)目質(zhì)量管理的溝通與協(xié)調(diào)機(jī)制
- 中醫(yī)常見(jiàn)的護(hù)理診斷及護(hù)理措施
- 設(shè)備技改方案范文
- 員工穩(wěn)定性保障措施及優(yōu)化方案
評(píng)論
0/150
提交評(píng)論