版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖所示,網絡紙上小正方形的邊長為1,粗線畫出的是某四棱錐的三視圖,則該幾何體的體積為()A.2 B. C.6 D.82.已知函數,若關于的方程有且只有一個實數根,則實數的取值范圍是()A. B.C. D.3.半正多面體(semiregularsolid)亦稱“阿基米德多面體”,是由邊數不全相同的正多邊形為面的多面體,體現(xiàn)了數學的對稱美.二十四等邊體就是一種半正多面體,是由正方體切截而成的,它由八個正三角形和六個正方形為面的半正多面體.如圖所示,圖中網格是邊長為1的正方形,粗線部分是某二十四等邊體的三視圖,則該幾何體的體積為()A. B. C. D.4.已知拋物線上的點到其焦點的距離比點到軸的距離大,則拋物線的標準方程為()A. B. C. D.5.若是定義域為的奇函數,且,則A.的值域為 B.為周期函數,且6為其一個周期C.的圖像關于對稱 D.函數的零點有無窮多個6.如圖,內接于圓,是圓的直徑,,則三棱錐體積的最大值為()A. B. C. D.7.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內隨機取一點,則該點取自陰影區(qū)域內(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.8.下列命題為真命題的個數是()(其中,為無理數)①;②;③.A.0 B.1 C.2 D.39.拋物線的準線方程是,則實數()A. B. C. D.10.已知,且,則在方向上的投影為()A. B. C. D.11.若均為任意實數,且,則的最小值為()A. B. C. D.12.直三棱柱中,,,則直線與所成的角的余弦值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.三所學校舉行高三聯(lián)考,三所學校參加聯(lián)考的人數分別為160,240,400,為調查聯(lián)考數學學科的成績,現(xiàn)采用分層抽樣的方法在這三所學校中抽取樣本,若在學校抽取的數學成績的份數為30,則抽取的樣本容量為____________.14.在中,角,,的對邊長分別為,,,滿足,,則的面積為__.15.曲線在處的切線方程是_________.16.已知復數,其中為虛數單位,若復數為純虛數,則實數的值是__.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)求證:在區(qū)間上有且僅有一個零點,且;(2)若當時,不等式恒成立,求證:.18.(12分)如圖,在四棱柱中,底面是正方形,平面平面,,.過頂點,的平面與棱,分別交于,兩點.(Ⅰ)求證:;(Ⅱ)求證:四邊形是平行四邊形;(Ⅲ)若,試判斷二面角的大小能否為?說明理由.19.(12分)為了實現(xiàn)中華民族偉大復興之夢,把我國建設成為富強民主文明和諧美麗的社會主義現(xiàn)代化強國,黨和國家為勞動者開拓了寬廣的創(chuàng)造性勞動的舞臺.借此“東風”,某大型現(xiàn)代化農場在種植某種大棚有機無公害的蔬菜時,為創(chuàng)造更大價值,提高畝產量,積極開展技術創(chuàng)新活動.該農場采用了延長光照時間和降低夜間溫度兩種不同方案.為比較兩種方案下產量的區(qū)別,該農場選取了40間大棚(每間一畝),分成兩組,每組20間進行試點.第一組采用延長光照時間的方案,第二組采用降低夜間溫度的方案.同時種植該蔬菜一季,得到各間大棚產量數據信息如下圖:(1)如果你是該農場的負責人,在只考慮畝產量的情況下,請根據圖中的數據信息,對于下一季大棚蔬菜的種植,說出你的決策方案并說明理由;(2)已知種植該蔬菜每年固定的成本為6千元/畝.若采用延長光照時間的方案,光照設備每年的成本為0.22千元/畝;若采用夜間降溫的方案,降溫設備的每年成本為0.2千元/畝.已知該農場共有大棚100間(每間1畝),農場種植的該蔬菜每年產出兩次,且該蔬菜市場的收購均價為1千元/千斤.根據題中所給數據,用樣本估計總體,請計算在兩種不同的方案下,種植該蔬菜一年的平均利潤;(3)農場根據以往該蔬菜的種植經驗,認為一間大棚畝產量超過5.25千斤為增產明顯.在進行夜間降溫試點的20間大棚中隨機抽取3間,記增產明顯的大棚間數為,求的分布列及期望.20.(12分)已知函數.(1)當時,試求曲線在點處的切線;(2)試討論函數的單調區(qū)間.21.(12分)已知橢圓經過點,離心率為.(1)求橢圓的方程;(2)過點的直線交橢圓于、兩點,若,在線段上取點,使,求證:點在定直線上.22.(10分)在中,內角的對邊分別是,已知.(1)求的值;(2)若,求的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
先由三視圖確定該四棱錐的底面形狀,以及四棱錐的高,再由體積公式即可求出結果.【詳解】由三視圖可知,該四棱錐為斜著放置的四棱錐,四棱錐的底面為直角梯形,上底為1,下底為2,高為2,四棱錐的高為2,所以該四棱錐的體積為.故選A【點睛】本題主要考查幾何的三視圖,由幾何體的三視圖先還原幾何體,再由體積公式即可求解,屬于??碱}型.2、B【解析】
利用換元法設,則等價為有且只有一個實數根,分三種情況進行討論,結合函數的圖象,求出的取值范圍.【詳解】解:設,則有且只有一個實數根.當時,當時,,由即,解得,結合圖象可知,此時當時,得,則是唯一解,滿足題意;當時,此時當時,,此時函數有無數個零點,不符合題意;當時,當時,,此時最小值為,結合圖象可知,要使得關于的方程有且只有一個實數根,此時.綜上所述:或.故選:A.【點睛】本題考查了函數方程根的個數的應用.利用換元法,數形結合是解決本題的關鍵.3、D【解析】
根據三視圖作出該二十四等邊體如下圖所示,求出該幾何體的棱長,可以將該幾何體看作是相應的正方體沿各棱的中點截去8個三棱錐所得到的,可求出其體積.【詳解】如下圖所示,將該二十四等邊體的直觀圖置于棱長為2的正方體中,由三視圖可知,該幾何體的棱長為,它是由棱長為2的正方體沿各棱中點截去8個三棱錐所得到的,該幾何體的體積為,故選:D.【點睛】本題考查三視圖,幾何體的體積,對于二十四等邊體比較好的處理方式是由正方體各棱的中點得到,屬于中檔題.4、B【解析】
由拋物線的定義轉化,列出方程求出p,即可得到拋物線方程.【詳解】由拋物線y2=2px(p>0)上的點M到其焦點F的距離比點M到y(tǒng)軸的距離大,根據拋物線的定義可得,,所以拋物線的標準方程為:y2=2x.故選B.【點睛】本題考查了拋物線的簡單性質的應用,拋物線方程的求法,屬于基礎題.5、D【解析】
運用函數的奇偶性定義,周期性定義,根據表達式判斷即可.【詳解】是定義域為的奇函數,則,,又,,即是以4為周期的函數,,所以函數的零點有無窮多個;因為,,令,則,即,所以的圖象關于對稱,由題意無法求出的值域,所以本題答案為D.【點睛】本題綜合考查了函數的性質,主要是抽象函數的性質,運用數學式子判斷得出結論是關鍵.6、B【解析】
根據已知證明平面,只要設,則,從而可得體積,利用基本不等式可得最大值.【詳解】因為,所以四邊形為平行四邊形.又因為平面,平面,所以平面,所以平面.在直角三角形中,,設,則,所以,所以.又因為,當且僅當,即時等號成立,所以.故選:B.【點睛】本題考查求棱錐體積的最大值.解題方法是:首先證明線面垂直同,得棱錐的高,然后設出底面三角形一邊長為,用建立體積與邊長的函數關系,由基本不等式得最值,或由函數的性質得最值.7、C【解析】令圓的半徑為1,則,故選C.8、C【解析】
對于①中,根據指數冪的運算性質和不等式的性質,可判定值正確的;對于②中,構造新函數,利用導數得到函數為單調遞增函數,進而得到,即可判定是錯誤的;對于③中,構造新函數,利用導數求得函數的最大值為,進而得到,即可判定是正確的.【詳解】由題意,對于①中,由,可得,根據不等式的性質,可得成立,所以是正確的;對于②中,設函數,則,所以函數為單調遞增函數,因為,則又由,所以,即,所以②不正確;對于③中,設函數,則,當時,,函數單調遞增,當時,,函數單調遞減,所以當時,函數取得最大值,最大值為,所以,即,即,所以是正確的.故選:C.【點睛】本題主要考查了不等式的性質,以及導數在函數中的綜合應用,其中解答中根據題意,合理構造新函數,利用導數求得函數的單調性和最值是解答的關鍵,著重考查了構造思想,以及推理與運算能力,屬于中檔試題.9、C【解析】
根據準線的方程寫出拋物線的標準方程,再對照系數求解即可.【詳解】因為準線方程為,所以拋物線方程為,所以,即.故選:C【點睛】本題考查拋物線與準線的方程.屬于基礎題.10、C【解析】
由向量垂直的向量表示求出,再由投影的定義計算.【詳解】由可得,因為,所以.故在方向上的投影為.故選:C.【點睛】本題考查向量的數量積與投影.掌握向量垂直與數量積的關系是解題關鍵.11、D【解析】
該題可以看做是圓上的動點到曲線上的動點的距離的平方的最小值問題,可以轉化為圓心到曲線上的動點的距離減去半徑的平方的最值問題,結合圖形,可以斷定那個點應該滿足與圓心的連線與曲線在該點的切線垂直的問題來解決,從而求得切點坐標,即滿足條件的點,代入求得結果.【詳解】由題意可得,其結果應為曲線上的點與以為圓心,以為半徑的圓上的點的距離的平方的最小值,可以求曲線上的點與圓心的距離的最小值,在曲線上取一點,曲線有在點M處的切線的斜率為,從而有,即,整理得,解得,所以點滿足條件,其到圓心的距離為,故其結果為,故選D.【點睛】本題考查函數在一點處切線斜率的應用,考查圓的程,兩條直線垂直的斜率關系,屬中檔題.12、A【解析】
設,延長至,使得,連,可證,得到(或補角)為所求的角,分別求出,解即可.【詳解】設,延長至,使得,連,在直三棱柱中,,,四邊形為平行四邊形,,(或補角)為直線與所成的角,在中,,在中,,在中,,在中,,在中,.
故選:A.【點睛】本題考查異面直線所成的角,要注意幾何法求空間角的步驟“做”“證”“算”缺一不可,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
某層抽取的人數等于該層的總人數乘以抽樣比.【詳解】設抽取的樣本容量為x,由已知,,解得.故答案為:【點睛】本題考查隨機抽樣中的分層抽樣,考查學生基本的運算能力,是一道容易題.14、.【解析】
由二次方程有解的條件,結合輔助角公式和正弦函數的值域可求,進而可求,然后結合余弦定理可求,代入,計算可得所求.【詳解】解:把看成關于的二次方程,則,即,即為,化為,而,則,由于,可得,可得,即,代入方程可得,,,由余弦定理可得,,解得:(負的舍去),.故答案為.【點睛】本題主要考查一元二次方程的根的存在條件及輔助角公式及余弦定理和三角形的面積公式的應用,屬于中檔題.15、【解析】
利用導數的運算法則求出導函數,再利用導數的幾何意義即可求解.【詳解】求導得,所以,所以切線方程為故答案為:【點睛】本題考查了基本初等函數的導數、導數的運算法則以及導數的幾何意義,屬于基礎題.16、2【解析】
由題,得,然后根據純虛數的定義,即可得到本題答案.【詳解】由題,得,又復數為純虛數,所以,解得.故答案為:2【點睛】本題主要考查純虛數定義的應用,屬基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)詳見解析;(2)詳見解析.【解析】
(1)利用求導數,判斷在區(qū)間上的單調性,然后再證異號,即可證明結論;(2)當時,不等式恒成立,分離參數只需時,恒成立,設(),需,根據(1)中的結論先求出,再構造函數結合導數法,證明即可.【詳解】(1),令,則,所以在區(qū)間上是增函數,則,所以在區(qū)間上是增函數.又因為,,所以在區(qū)間上有且僅有一個零點,且.(2)由題意,在區(qū)間上恒成立,即在區(qū)間上恒成立,當時,;當時,恒成立,設(),所以.由(1)可知,,使,所以,當時,,當時,,由此在區(qū)間上單調遞減,在區(qū)間上單調遞增,所以.又因為,所以,從而,所以.令,,則,所以在區(qū)間上是增函數,所以,故.【點睛】本題考查導數的綜合應用,涉及到函數的單調性、函數的零點、極值最值、不等式的證明,分離參數是解題的關鍵,意在考查邏輯推理、數學計算能力,屬于較難題.18、(1)證明見解析;(2)證明見解析;(3)不能為.【解析】
(1)由平面平面,可得平面,從而證明;(2)由平面與平面沒有交點,可得與不相交,又與共面,所以,同理可證,得證;(3)作交于點,延長交于點,連接,根據三垂線定理,確定二面角的平面角,若,,由大角對大邊知,兩者矛盾,故二面角的大小不能為.【詳解】(1)由平面平面,平面平面,且,所以平面,又平面,所以;(2)依題意都在平面上,因此平面,平面,又平面,平面,平面與平面平行,即兩個平面沒有交點,則與不相交,又與共面,所以,同理可證,所以四邊形是平行四邊形;(3)不能.如圖,作交于點,延長交于點,連接,由,,,所以平面,則平面,又,根據三垂線定理,得到,所以是二面角的平面角,若,則是等腰直角三角形,,又,所以中,由大角對大邊知,所以,這與上面相矛盾,所以二面角的大小不能為.【點睛】本題考查了立體幾何中的線線平行和垂直的判定問題,和二面角的求解問題,意在考查學生的空間想象能力和邏輯推理能力;解答本題關鍵在于能利用直線與直線、直線與平面、平面與平面關系的相互轉化,屬中檔題.19、(1)見解析;(2)(i)該農場若采用延長光照時間的方法,預計每年的利潤為426千元;(ii)若采用降低夜間溫度的方法,預計每年的利潤為424千元;(3)分布列見解析,.【解析】
(1)估計第一組數據平均數和第二組數據平均數來選擇.(2)對于兩種方法,先計算出每畝平均產量,再算農場一年的利潤.(3)估計頻率分布直方圖可知,增產明顯的大棚間數為5間,由題意可知,的可能取值有0,1,2,3,再算出相應的概率,寫出分布列,再求期望.【詳解】(1)第一組數據平均數為千斤/畝,第二組數據平均數為千斤/畝,可知第一組方法較好,所以采用延長光照時間的方法;((2)(i)對于采用延長光照時間的方法:每畝平均產量為千斤.∴該農場一年的利潤為千元.(ii)對于采用降低夜間溫度的方法:每畝平均產量為千斤,∴該農場一年的利潤為千元.因此,該農場若采用延長光照時間的方法,預計每年的利潤為426千元;若采用降低夜間溫度的方法,預計每年的利潤為424千元.(3)由圖可知,增產明顯的大棚間數為5間,由題意可知,的可能取值有0,1,2,3,;;;.所以的分布列為0123所以.【點睛】本題主要考查樣本估計總體和離散型隨機變量的分布列,還考查了數據處理和運算求解的能力,屬于中檔題.20、(1);(2)見解析【解析】
(1)對函數進行求導,可以求出曲線在點處的切線,利用直線的斜截式方程可以求出曲線的切線方程;(2)對函數進行求導,對實數進行分類討論,可以求出函數的單調區(qū)間.【詳解】(1)當時,函數定義域為,,所以切線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年中國粗濾器市場調查研究報告
- 2025年度三方二手車交易糾紛調解與仲裁執(zhí)行合同3篇
- 2025版超高層建筑施工現(xiàn)場安全管理合同3篇
- 2024年中國電氣控制元件市場調查研究報告
- 2024年版房屋租賃合同(含裝修及使用權轉讓條款)
- 2025版跨境電商終止勞務派遣合同協(xié)議6篇
- 2024年版江蘇省離婚房產過戶合同范本
- 2025年度城市地下綜合管廊建設合同范本匯編3篇
- 2025年年度VIP客戶數據共享合作協(xié)議
- 2025年度文化旅游項目開發(fā)與運營合同4篇
- DG-TJ 08-2360-2021 裝配整體式混凝土結構工程監(jiān)理標準
- 安徽省水利工程質量檢測和建筑材料試驗服務收費標準
- 快遞公司消防安全管理制度范本(通用5篇)
- QCDSM目標管理五大要素
- OA協(xié)同辦公系統(tǒng)運行管理規(guī)定
- 某小區(qū)建筑節(jié)能保溫工程監(jiān)理實施細則
- 高一語文必修一二冊背誦課文默寫
- 外市電引入工程實施管理要求(重要)
- 危險化學品企業(yè)重點人員任職資質達標要求
- 光纜測試單芯光纖模版(自動生成曲線圖144芯)
- 電光調制實驗報告
評論
0/150
提交評論