版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2022-2023學年高三上數(shù)學期末模擬試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.定義在上的偶函數(shù),對,,且,有成立,已知,,,則,,的大小關(guān)系為()A. B. C. D.2.已知集合,,則()A. B. C. D.3.已知向量,若,則實數(shù)的值為()A. B. C. D.4.設(shè)函數(shù)(,)是上的奇函數(shù),若的圖象關(guān)于直線對稱,且在區(qū)間上是單調(diào)函數(shù),則()A. B. C. D.5.洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點為陰數(shù).如圖,若從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),則其和等于11的概率是().A. B. C. D.6.下圖中的圖案是我國古代建筑中的一種裝飾圖案,形若銅錢,寓意富貴吉祥.在圓內(nèi)隨機取一點,則該點取自陰影區(qū)域內(nèi)(陰影部分由四條四分之一圓弧圍成)的概率是()A. B. C. D.7.圓心為且和軸相切的圓的方程是()A. B.C. D.8.已知a,b∈R,,則()A.b=3a B.b=6a C.b=9a D.b=12a9.若的展開式中二項式系數(shù)和為256,則二項式展開式中有理項系數(shù)之和為()A.85 B.84 C.57 D.5610.若的二項展開式中的系數(shù)是40,則正整數(shù)的值為()A.4 B.5 C.6 D.711.在復平面內(nèi),復數(shù)對應的點的坐標為()A. B. C. D.12.橢圓的焦點為,點在橢圓上,若,則的大小為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.如圖是某幾何體的三視圖,俯視圖中圓的兩條半徑長為2且互相垂直,則該幾何體的體積為________.14.已知函數(shù),若函數(shù)有個不同的零點,則的取值范圍是___________.15.在中,角A,B,C的對邊分別為a,b,c,且,則________.16.若滿足約束條件,則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,左、右焦點為,點為上任意一點,若的最大值為3,最小值為1.(1)求橢圓的方程;(2)動直線過點與交于兩點,在軸上是否存在定點,使成立,說明理由.18.(12分)選修4-4:坐標系與參數(shù)方程在平面直角坐標系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標系原點O為極點,x軸的正半軸為極軸建立極坐標系,直線l的極坐標方程為,點P為曲線C上的動點,求點P到直線l距離的最大值.19.(12分)的內(nèi)角A,B,C的對邊分別為a,b,c,已知.(1)求B;(2)若,求的面積的最大值.20.(12分)在直角坐標系中,直線的參數(shù)方程是為參數(shù)),曲線的參數(shù)方程是為參數(shù)),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求直線和曲線的極坐標方程;(2)已知射線與曲線交于兩點,射線與直線交于點,若的面積為1,求的值和弦長.21.(12分)設(shè)都是正數(shù),且,.求證:.22.(10分)對于正整數(shù),如果個整數(shù)滿足,且,則稱數(shù)組為的一個“正整數(shù)分拆”.記均為偶數(shù)的“正整數(shù)分拆”的個數(shù)為均為奇數(shù)的“正整數(shù)分拆”的個數(shù)為.(Ⅰ)寫出整數(shù)4的所有“正整數(shù)分拆”;(Ⅱ)對于給定的整數(shù),設(shè)是的一個“正整數(shù)分拆”,且,求的最大值;(Ⅲ)對所有的正整數(shù),證明:;并求出使得等號成立的的值.(注:對于的兩個“正整數(shù)分拆”與,當且僅當且時,稱這兩個“正整數(shù)分拆”是相同的.)
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
根據(jù)偶函數(shù)的性質(zhì)和單調(diào)性即可判斷.【詳解】解:對,,且,有在上遞增因為定義在上的偶函數(shù)所以在上遞減又因為,,所以故選:A【點睛】考查偶函數(shù)的性質(zhì)以及單調(diào)性的應用,基礎(chǔ)題.2、D【解析】
先求出集合B,再與集合A求交集即可.【詳解】由已知,,故,所以.故選:D.【點睛】本題考查集合的交集運算,考查學生的基本運算能力,是一道容易題.3、D【解析】
由兩向量垂直可得,整理后可知,將已知條件代入后即可求出實數(shù)的值.【詳解】解:,,即,將和代入,得出,所以.故選:D.【點睛】本題考查了向量的數(shù)量積,考查了向量的坐標運算.對于向量問題,若已知垂直,通??傻玫絻蓚€向量的數(shù)量積為0,繼而結(jié)合條件進行化簡、整理.4、D【解析】
根據(jù)函數(shù)為上的奇函數(shù)可得,由函數(shù)的對稱軸及單調(diào)性即可確定的值,進而確定函數(shù)的解析式,即可求得的值.【詳解】函數(shù)(,)是上的奇函數(shù),則,所以.又的圖象關(guān)于直線對稱可得,,即,,由函數(shù)的單調(diào)區(qū)間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數(shù)的圖象與性質(zhì)的綜合應用,由對稱軸、奇偶性及單調(diào)性確定參數(shù),屬于中檔題.5、A【解析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個,由此能求出其和等于11的概率.【詳解】解:從四個陰數(shù)和五個陽數(shù)中分別隨機選取1個數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個,其和等于的概率.故選:.【點睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識,考查運算求解能力,屬于基礎(chǔ)題.6、C【解析】令圓的半徑為1,則,故選C.7、A【解析】
求出所求圓的半徑,可得出所求圓的標準方程.【詳解】圓心為且和軸相切的圓的半徑為,因此,所求圓的方程為.故選:A.【點睛】本題考查圓的方程的求解,一般求出圓的圓心和半徑,考查計算能力,屬于基礎(chǔ)題.8、C【解析】
兩復數(shù)相等,實部與虛部對應相等.【詳解】由,得,即a,b=1.∴b=9a.故選:C.【點睛】本題考查復數(shù)的概念,屬于基礎(chǔ)題.9、A【解析】
先求,再確定展開式中的有理項,最后求系數(shù)之和.【詳解】解:的展開式中二項式系數(shù)和為256故,要求展開式中的有理項,則則二項式展開式中有理項系數(shù)之和為:故選:A【點睛】考查二項式的二項式系數(shù)及展開式中有理項系數(shù)的確定,基礎(chǔ)題.10、B【解析】
先化簡的二項展開式中第項,然后直接求解即可【詳解】的二項展開式中第項.令,則,∴,∴(舍)或.【點睛】本題考查二項展開式問題,屬于基礎(chǔ)題11、C【解析】
利用復數(shù)的運算法則、幾何意義即可得出.【詳解】解:復數(shù)i(2+i)=2i﹣1對應的點的坐標為(﹣1,2),故選:C【點睛】本題考查了復數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎(chǔ)題.12、C【解析】
根據(jù)橢圓的定義可得,,再利用余弦定理即可得到結(jié)論.【詳解】由題意,,,又,則,由余弦定理可得.故.故選:C.【點睛】本題考查橢圓的定義,考查余弦定理,考查運算能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、20【解析】
由三視圖知該幾何體是一個圓柱與一個半球的四分之三的組合,利用球體體積公式、圓柱體積公式計算即可.【詳解】由三視圖知,該幾何體是由一個半徑為2的半球的四分之三和一個底面半徑2、高為4的圓柱組合而成,其體積為.故答案為:20.【點睛】本題考查三視圖以及幾何體體積,考查學生空間想象能力以及數(shù)學運算能力,是一道容易題.14、【解析】
作出函數(shù)的圖象及直線,如下圖所示,因為函數(shù)有個不同的零點,所以由圖象可知,,,所以.15、【解析】
利用正弦定理將邊化角,即可容易求得結(jié)果.【詳解】由正弦定理可知,,即.故答案為:.【點睛】本題考查利用正弦定理實現(xiàn)邊角互化,屬基礎(chǔ)題.16、4【解析】
作出可行域如圖所示:由,解得.目標函數(shù),即為,平移斜率為-1的直線,經(jīng)過點時,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)存在;詳見解析【解析】
(1)由橢圓的性質(zhì)得,解得后可得,從而得橢圓方程;(2)設(shè),當直線斜率存在時,設(shè)為,代入橢圓方程,整理后應用韋達定理得,代入=0由恒成立問題可求得.驗證斜率不存在時也適合即得.【詳解】解:(1)由題易知解得,所以橢圓方程為(2)設(shè)當直線斜率存在時,設(shè)為與橢圓方程聯(lián)立得,顯然所以因為化簡解得即所以此時存在定點滿足題意當直線斜率不存在時,顯然也滿足綜上所述,存在定點,使成立【點睛】本題考查求橢圓的標準方程,考查直線與橢圓相交問題中的定點問題,解題方法是設(shè)而不求的思想方法.設(shè)而不求思想方法是直線與圓錐曲線相交問題中常用方法,只要涉及交點坐標,一般就用此法.18、(1),(2)【解析】
試題分析:利用將極坐標方程化為直角坐標方程:化簡為ρcosθ+ρsinθ=1,即為x+y=1.再利用點到直線距離公式得:設(shè)點P的坐標為(2cosα,sinα),得P到直線l的距離試題解析:解:化簡為ρcosθ+ρsinθ=1,則直線l的直角坐標方程為x+y=1.設(shè)點P的坐標為(2cosα,sinα),得P到直線l的距離,dmax=.考點:極坐標方程化為直角坐標方程,點到直線距離公式19、(1)(2)【解析】
(1)由正弦定理邊化角化簡已知條件可求得,即可求得;(2)由余弦定理借助基本不等式可求得,即可求出的面積的最大值.【詳解】(1),,所以,所以,,,,.(2)由余弦定理得.,,當且僅當時取等,.所以的面積的最大值為.【點睛】本題考查了正余弦定理在解三角形中的應用,考查了三角形面積的最值問題,難度較易.20、(1),;(2).【解析】
(1)先把直線和曲線的參數(shù)方程化成普通方程,再化成極坐標方程;(2)聯(lián)立極坐標方程,根據(jù)極徑的幾何意義可得,再由面積可解得極角,從而可得.【詳解】(1)直線的參數(shù)方程是為參數(shù)),消去參數(shù)得直角坐標方程為:.轉(zhuǎn)換為極坐標方程為:,即.曲線的參數(shù)方程是(為參數(shù)),轉(zhuǎn)換為直角坐標方程為:,化為一般式得化為極坐標方程為:.
(2)由于,得,.所以,所以,由于,所以,所以.【點睛】本題主要考查參數(shù)方程與普通方程的互化、直角坐標方程與極坐標方程的互化,熟記公式即可,屬于??碱}型.21、證明見解析【解析】
利用比較法進行證明:把代數(shù)式展開、作差、化簡可得,,可證得成立,同理可證明,由此不等式得證.【詳解】證明:因為,,所以,∴成立,又都是正數(shù),∴,①同理,∴.【點睛】本題考查利用比較法證明不等式;考查學生的邏輯推理能力和運算求解能力;把差變形為因式乘積的形式是證明本題的關(guān)鍵;屬于中檔題。22、(Ⅰ),,,,;(Ⅱ)為偶數(shù)時,,為奇數(shù)時,;(Ⅲ)證明見解析,,【解析】
(Ⅰ)根據(jù)題意直接寫出答案.(Ⅱ)討論當為偶數(shù)時,最大為,當為奇數(shù)時,最大為,得到答案.(Ⅲ)討論當為奇數(shù)時,,至少存在一個全為1的拆分,故,當為偶數(shù)時,根據(jù)對應關(guān)系得到,再計算,,得到答案.【詳解】(Ⅰ)整數(shù)4的所有“正整數(shù)分拆”為:,,,,.(Ⅱ)當為偶數(shù)時,時,最大為;當為奇數(shù)時,時,最大為;綜上所述:為偶數(shù),最
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版船舶抵押擔保法律意見合同3篇
- 數(shù)據(jù)庫原理及應用課程設(shè)計報告模板(知識研究)
- 轉(zhuǎn)向燈課程設(shè)計
- 課程設(shè)計圖形
- 追兔問題課程設(shè)計
- 瑜伽館黑板課程設(shè)計
- 二零二五年度廢舊塑料瓶回收利用承包合同3篇
- 2025版借車保險理賠服務(wù)合同3篇
- 踢毽子游戲課程設(shè)計
- 管理制度的建立及執(zhí)行情況的匯(3篇)
- 閩教版小學英語閱讀理解10篇
- 糧油、調(diào)料配送投標方案(技術(shù)標)
- 主題班會《我愛爸爸媽媽》
- 新中小企業(yè)促進法宣講暨十條的措施解讀課件
- 機器學習與大數(shù)據(jù)技術(shù)PPT完整全套教學課件
- 班主任如何與家長進行有效溝通交流講座PPT課件講義
- 國際疾病分類ICD11編碼庫
- WORD版A4橫版密封條打印模板(可編輯)
- 2023年北京廣播電視臺招聘140人(共500題含答案解析)筆試必備資料歷年高頻考點試題摘選
- 植樹造林項目協(xié)調(diào)組織措施
- 一元一次方程的應用-行程問題說課課件
評論
0/150
提交評論