關注AI鴻溝:塑造未來勞動世界的全球視角 Mind the AI Divide Shaping a Global Perspective on the Future of Work_第1頁
關注AI鴻溝:塑造未來勞動世界的全球視角 Mind the AI Divide Shaping a Global Perspective on the Future of Work_第2頁
關注AI鴻溝:塑造未來勞動世界的全球視角 Mind the AI Divide Shaping a Global Perspective on the Future of Work_第3頁
關注AI鴻溝:塑造未來勞動世界的全球視角 Mind the AI Divide Shaping a Global Perspective on the Future of Work_第4頁
關注AI鴻溝:塑造未來勞動世界的全球視角 Mind the AI Divide Shaping a Global Perspective on the Future of Work_第5頁
已閱讀5頁,還剩40頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

MindtheAIDivide

ShapingaGlobalPerspectiveontheFutureofWork

MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork

Copyright?2024UnitedNationsAllrightsreservedworldwide.

Nopartofthispublicationmay,forcommercialpurposes,bereproducedortransmittedinanyformorbyanymeans,electronicormechanical,includingphotocopy,recordingoranyinformationstorageandretrievalsystemnowknownortobeinvented,withoutwrittenpermissionbythepublisher.

RequeststoreproduceexcerptsortophotocopyshouldbeaddressedtotheCopyrightClearanceCenterat.

Allotherqueriesonrightsandlicenses,includingsubsidiaryrights,shouldbeaddressedto:UnitedNationsPublications,405East42ndStreet,S-11FW001,NewYork,NY10017,UnitedStatesofAmerica.Email:permissions@.Website:.

ThedesignationsemployedandthepresentationofthematerialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartoftheSecretariatoftheUnitedNationsconcerningthelegalstatusofanycountry.

PDFISBN:9789211066524

Foreword

TheunevenadoptionofArtificialIntelligence(AI)isacriticalissuethatgoesbeyondeconomic

growth.Itimpactsglobalequity,fairnessandthesocialcontractthatisattheheartofsocialjustice.Disparitiesinaccesstorobustinfrastructure,advancedtechnology,qualityeducationandtrainingaredeepeningexistinginequalities.AstheglobaleconomyincreasinglyshiftstowardsAI-driven

productionandinnovation,lessdevelopedcountriesriskbeingleftfurtherbehind,exacerbating

economicandsocialdivides.Withouttargetedandconcertedeffortstobridgethisdigitaldivide,

AI’spotentialtofostersustainabledevelopmentandalleviatepovertywillremainunrealized,leavingsignificantportionsoftheglobalpopulationdisadvantagedintherapidlyevolvingtechnological

landscape.

DuringtheconsultationsheldbytheSecretary-General’sHigh-levelAdvisoryBodyonArtificial

Intelligence,ithasbecomeclearthattheworldofworkisattheheartoftheadoptionofAI.Itis

thuscriticaltounderstandthepotentialforAItoaffectlabourdemandandtransformoccupations.Itisattheworkplacewherethepotentialforproductivitygainsandimprovedworkingconditionsforthebenefitofworkers,theirfamilies,andsocietiesatlarge,canberealized.Butsuchbenefitswillnothappenontheirown;theywillonlybeachievediftherightconditionsareinplace,includingtheavailabilityofdigitalinfrastructureandskills,butalsoacultureofsocialdialoguethatfostersapositiveintegrationoftechnology.

PromotinginclusivegrowthrequiresproactivestrategiestosupportAIdevelopmentincountriesonthewrongsideoftheAIdivide.Thisinvolvesenhancingdigitalinfrastructure,promotingtechnologytransfer,buildingAIskills,andensuringthatalljobsalongtheAIvaluechainareofgoodqualityandimprovethelivesofworkingpeople.ByprioritizinginternationalcollaborationinAIcapacitybuilding,wecancreateamoreequitableandresilientAIecosystem,unlockingopportunitiesforshared

prosperityandhumanadvancementworldwide.

WelookforwardtocontinuingourcollaborativeeffortstoshapetheglobalgovernanceofAI,upholdhumandignityandlaborstandards,andexpandeconomicopportunityforall.

AmandeepSinghGill

UnitedNationsSecretary-General’sEnvoyonTechnology

GilbertF.Houngbo

Director-GeneraloftheInternationalLabourOrganization

MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|3

Contents

Foreword3

Section1.Introduction5

Section2.Unevenground:UnderstandingAI’sroleinreshapinglabourmarkets6

Ensuringjobqualityunderaugmentation10

Section3.TheAIvaluechainandthedemandforskills11

AdaptingskillsfortheAIlandscape14

Section4.Movingforward:Strengtheninginternationalcooperation,building17

nationalcapacity,andaddressingAIintheworldofwork

StrengthenedinternationalcooperationonAI17

BuildingnationalAIcapacity18

TowardsapositiveintegrationofAIintheworldofwork18

Acknowledgments20

References21

4|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork

Section1

Introduction

TherapidadvancementofArtificialIntelligence(AI)promiseswidespreadtransformations

foroursocieties,oureconomiesandthe

worldofwork.Whilesuchadvancesoffer

tremendousopportunitiesforinnovationand

productivity,theunevenratesofinvestment,

adoptionanduseamongcountriesrisks

exacerbatingthealreadywidedisparities

inincomeandqualityoflife.Thereisa

pronounced“AIdivide”emerging,wherehighincomenationsdisproportionatelybenefitfromAIadvancements,whilelow-andmedium-

incomecountries,particularlyinAfrica,lag

behind.Worse,thisdividewillgrowunless

concertedactionistakentofosterinternationalcooperationinsupportofdevelopingcountries.Theabsenceofsuchpolicieswillnotonly

widenglobalinequalities,butriskssquanderingthepotentialofAItoserveasacatalystfor

widespreadsocialandeconomicprogress.

WhileAIwillpotentiallyaffectmanyaspects

ofourdailylives,itsimpactislikelytobemostacuteintheworkplace.Wealthiercountries

aremoreexposedtothepotentialautomatingeffectsofAIintheworldofwork,buttheyarealsobetterpositionedtorealizetheproductivitygainsitoffers.Developingcountries,onthe

otherhand,maybetemporarilybuffered

becauseofalackofdigitalinfrastructure,butthisbufferrisksturningintoabottleneckforproductivitygrowth,andmoreimportantly,forthefutureprosperityoftheirpopulations.

Ensuringinclusivegrowthinthefuture

requiresproactivemeasurestoempowerAI

developmentincountriesatthedisadvantagedreceivingendofthedigitaldivide,fostering

digitalinfrastructureaswellasAIskills,and

promotingtechnologytransferandabsorption.Suchdigitalskillscanalsoenableamore

positiveintegrationofAIintheworkplace,particularlywhencombinedwithsocial

dialogue.Socialdialogueonthedesign,

implementationanduseoftechnologyattheworkplace,aswellasinthedevelopmentofregulationsessentialforensuringrespect

ofworkers’fundamentalrights,isneeded.

Indeed,whethertheintegrationoftechnologyintoworkprocessesspursproductivitygrowthorimprovesworkingconditionsinsupport

ofsocialjusticedependsinlargepartonthestrengthofsuchcollaborationanddialogue.

SovereigneffortsplayacrucialroleinshapingAIcapacitybuildingascountriesassert

theirautonomyindevelopingstrategies

andpoliciestailoredtotheiruniquesocio-

economiccontexts.Localprocesses,driven

byculturalvalues,politicaleconomies,and

societalneeds,cansignificantlyimpactthe

effectivenessandsustainabilityofAIinitiatives.However,disparitiesinresourcesandexpertiseremainandcanhinderAIdevelopmentinthe

GlobalSouth.Inresponse,thereisagrowing

recognitionoftheresponsibilityofdevelopedcountriestosupportcapacitybuildingeffortsinresourcescarcecountries.Asoutlined

intherecentInterimReportoftheUnited

NationsSecretary-General’sHigh-levelAdvisoryBodyonAI1,thisrecognitionextendsbeyond

financialaidtoincludeknowledgesharing,

skillsdevelopment,technologytransfer,aswellascollaborativeresearchanddevelopment

partnerships.Byleveragingtheiradvanced

AIecosystems,theGlobalNorthcanhelp

bridgethegapandempowercountriesinthe

GlobalSouthtoharnessAIforsustainable

development,whilerespectingtheirsovereigntyandpromotinglocalinnovationecosystems.ByprioritizingglobalcollaborationforAIcapacitybuilding,theinternationalcommunitycan

nurtureamoreequitableandresilientglobalAIecosystem,unlockingopportunitiesforsharedprosperityandhumanflourishingacrossthe

world.

1

/ai-advisory-body

MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|5

Section2

Unevenground

UnderstandingAI’sroleinreshapinglabourmarkets

ResearchonthepossibleeffectsofgenerativeAIonemploymentacrosstheworldsuggeststhatwhiletherearelikelytobeimportant

transformativeeffectsonsomeoccupations,impactsintermsofjoblossesaremuchlessthanheadlinefiguresappearinginthemedia,andcertainlydonotpointtoajoblessfuture.AccordingtoananalysisundertakenbytheInternationalLabourOrganizationonthe

potentialexposureoftaskstogenerativeAItechnology,clericalsupportworkersarethemostexposedoccupationalgroupwith24

percentofthetasksinthesejobsassociatedwithhighlevelofexposuretoautomation

andanother58percentwithmedium-levelexposure(seeFigure1).2Otheroccupationalgroupsarelessexposed,withonly1to4

percentoftasksconsideredashavinghigh

automationpotential,andmedium-exposedtasksnotexceeding25percent.Thismeansthat,whilecertaintasksintheseoccupationscouldpotentiallybeautomated,mosttasks

stillrequirehumanintervention.Suchpartialautomationcouldenableefficiencygains,byallowinghumanstospendmoretimeonotherareasofwork.

Importantly,taskautomationdoesnot

necessarilyimplyredundancies,asthe

technologycanalsocomplementoraugmenthumanlabourwhenonlycertaintasksare

automated.Whethertheadoptionofthe

technologyleadstoautomation(jobloss)oraugmentation(jobcomplementarity)dependsonthecentralityoftheautomatedtasktotheoccupation,howthetechnologyisintegrated

Figure1:Taskswithmediumandhigh-levelexposuretogenerativeAItechnologybymajoroccupationalgroup(ISCO1-digit)

Source:Gmyreketal.,2023.

2Thestudyanalysesthepotentialforautomationwiththe436internationallystandardizedISCO-08occupationsandthenclassifiestheoccupationbasedonthemeanandstandarddeviationofthescore.Formoredetailssee[1].

6|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork

intoworkprocessesandmanagement’s

desiretoretainhumanstoperformoroverseesomeofthetasks,despitethepotentialof

automation.

TheILOanalysisusesoccupationalexposurescores(themeanexposureofeachofthe

taskswithinanoccupation)andappliesthesescorestoemploymentdatafromlabourforcesurveysofmorethan140countriestoassesspotentialemploymentimpactattheglobal

andregionallevel.Withrespecttoautomation,theshareofemploymentthatisexposed

ishighestinEuropeandNorthernAmerica,

reflectingthegreatereconomicandlabour

marketdiversificationoftheseregions.In

LatinAmerica,AsiaandAfrica,theshareofemploymentpotentialexposedtoautomationismuchsmaller,duetothegreatershareofworkersemployedinoccupationsthatwouldnotbeexposedtogenerativeAItechnologysuchasinagriculture,transportorfood

vending.

Nevertheless,women’spotentialexposuretotheautomatingeffectsofgenerative

AItechnologyismuchhigher,duetotheir

over-representationinclericaloccupations

(seefigure2).Inmostregions,thepotential

exposureofwomenismorethandoublethatofmen’sexposure.Someofthisemploymentisinbusinessprocessoutsourcing,suchascontactorcallcenterwork,whichisanimportantpartoftheeconomyofseveraldevelopingcountries,includingIndiaandthePhilippines.Theindustryisanimportantsourceofformalandrelativelywell-paidemployment,particularlyforwomen.Whilepotentialexposuredoesnotnecessarilytranslatetodisplacement,itisclearthatthe

advancesintechnologymayputsomeofthesejobsatrisk.3

Anotherfindingisthatasignificantlylarger

shareoftotalemploymentisinoccupations

withhighaugmentationpotential,andthis

holdsacrossregions,from10.2percent

inSub-SaharanAfricato16.1percentin

SoutheasternAsiaandthePacific(Seefigure3).Thus,thepotentialforoccupationsto

benefitfromtheproductivity-enhancingeffectsofthetechnologyisrelativelysimilaracross

countries.Inpractice,however,itislesslikely

Figure2:Potentialexposuretoautomationbyglobalsub-region

3‘AICouldKilloffMostCallCentres,SaysTataConsultancyServicesHead’,April25,2024.

MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|7

Figure3:Potentialexposuretoaugmentationbyglobalsub-region

toberealizedduetoconstraintsinphysical

infrastructure(electricityaccess,broadband)aswellasdigitalskills.Indeed,subsequent

researchthatincorporatesdataoncomputeruseatwork[2]revealsthatmanyofthe

occupationswithpotentialforaugmentationhaverelativelylowusageofcomputeratwork,

suggestingthattheconditionsarenotinplaceforrealizingthepotentialproductivitygains.

AscanbeseeninFigure4,theshareof

workerswithoutaccesstoacomputeratwork(“nocomputer”)exceedsthosewhousea

computerin9ofthe16countrieslisted.As

Figure4:Potentialexposuretoaugmentationandcomputeruseatwork

Source:Gmyrek,WinklerandGarganta,2024.

8|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork

such,thelikelihoodtorealizeproductivitygainsfromgenerativeAItechnologywillbelimited.

Figure5givesinformationonthe

characteristicsofthosewhomightbeaffectedbyautomationfromgenerativeAItechnologyinLatinAmerica.Asthedatashow,itiseducatedwomenlivinginurbanareasandbelonging

tothetopfifthoftheincomedistributionthataremostexposed.ForLatinAmerica,theseoccupationsareoverwhelminglyinsalaried,formalemploymentandinthesectorsof

finance,professionalservicesandpublicadministration.Inshort,theyaregoodjobs,whoselosswouldhavenegativemultipliereffectsbotheconomicallyandsocially.

Theanalysisdoesnotaddressthepotentialfornewjobcreation.Thus,whilemiddle-incomecountriessuchasIndiaandthePhilippines,

aremoreexposedtotheautomatingeffects

ofgenerativeAItechnologyintheircallcentrework,theirdigitalinfrastructureandskilled

workforcecanalsobeanassetforspawningthegrowthofcomplementaryindustries.

Harnessingsuchpotentialisparamount.

Indeed,withtherightconditionsinplace,a

newwaveoftechnologycouldfuelgrowth

opportunities.Inthepast,technological

advancementshavespurrednewand

successfulindustriesinmanydeveloping

countries.OnesuchexampleistheM-Pesa

moneyservice,whichreliedonthediffusionofmobiletelephonesinKenya.Theservice,

inturn,increasedfinancialinclusionwhich

helpedtopropelthegrowthofSMEsandledtocreationofanetworkof110,000agents,

40timesthenumberofbankATMsinKenya[3];[4].Similarly,astudyofthediffusionof3GcoverageinRwandabetween2002and2019foundthatincreasedmobileinternetcoverage

Figure5:Characteristicsofpersonsholdingoccupationsmostexposedtoautomation,LatinAmerica

Source:Gmyrek,WinklerandGarganta,2024(forthcoming).

MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|9

waspositivelyassociatedwithemployment

growth,increasingbothskilledandunskilled

occupations[5].Scholars[6]alsofindpositiveemploymenteffects,fromthearrivalofinternetin12Africancountries,albeitwithaslight

biastowardsskilledoccupations.Thesegainsareattributedtoincreasesinproductivityandgrowthofmarketsthatfollowedincreased

connectivity,underliningtheneedforsuch

investments,givenimportantmultipliereffectsontheeconomyandlabourmarkets.

Ensuringjobqualityunderaugmentation

Anotherareaofconcernisabouttheimpact

ofAItechnologyonworkingconditionsand

jobqualitywhenthetechnologyisintegrated

intotheworkplace.Whilesuchintegration

intoworktaskscanpotentiallypromotemoreengagingworkifroutinetasksareautomated,itcanalsobeimplementedinwaysthat

limitsworkers’agencyoraccelerateswork

intensity.ConcernsoverAI’sintegrationat

theworkplacehasfocusedonthegrowthof

algorithmicmanagement,essentiallywork

settingsinwhich“humanjobsareassigned,

optimized,andevaluatedthroughalgorithms

andtrackeddata”[7].Algorithmicmanagementisadefiningfeatureofdigitallabourplatforms,butitisalsopervasiveinofflineindustries

suchasthewarehousingandlogisticssectors.Inwarehousesanautomated,“voice-picking”

systemdirectswarehousestafftopickcertainproductsinthewarehouse,whileusingdata

collectiontomonitorworkersandsetthe

paceofwork[8].Besideslackingautonomytoorganizetheirworkorsetitspace,workersalsohavelittleabilitytoprovidefeedbackordiscusswithmanagementabouttheorganizationof

work[9].TheintegrationofgenerativeAIintootherfieldssuchasbanking,insurance,socialservices,andcustomerservicemorebroadlymayhaveasimilareffect.

Technologicaladvancementsareoftenfeltmoreimmediatelyattheworkplacelevelandareusuallybestaddressedattheworkplace.

Asaresult,whethertheeffectoftechnology

onworkingconditionsispositiveornegativedependsinlargepartonthevoicethatworkershaveinthedesign,implementationanduseoftechnology.Havingsuchagencyreliesinturnontheopportunitiesforworkerparticipation

anddialogue.Thiscantakeplaceeither

throughformalizedsettings,suchasworks

councilsorguidanceprovidedincollective

bargainingagreements,orlessformally,in

workplaceswherethereisahighdegreeof

employeeengagement.StudiesinEurope

haveshownthatitiscountrieswithstrongerandmorecooperativeformsofworkplace

consultation,essentiallytheNordiccountriesandGermany,whereworkersaremoreopentotechnologicaladoptionattheworkplace[10].

10|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork

Section3

TheAIvaluechainand

thedemandforskills

Liketheproductionofmanygoodsand

servicesintheglobaleconomy,AIhasitsownvaluechain.AsdepictedinFigure6,therearedifferentstagesoftheAIvaluechain,eachwithspecifichumanandsocialinfrastructureneeds.Asistypicalinmostglobalvaluechains,stagesdifferintheamountofvaluereceivedforthe

contributionmade,withlower-valueadded

activitiespredominantinmiddleandlow-

incomecountriesanddesignanddeploymentassociatedwithhigher-incomecountries.

DataisfundamentaltothedevelopmentandoperationofAIsystems.Human-prepared

dataisfedintoAIsystemstohelpthemlearnthenecessaryconnectionsandpatternsfor

functionality.Thesourcesofthisdataare

diverse,dependingonthesystem’spurpose.Publiclyavailabledata,suchasUnitedNationsdocumentsusedfortrainingtranslation

programs,contributedtoadvancesinnaturallanguageprocessing.Proprietarydataisalsocrucial,particularlyinworkplaceapplications,likecallcenterrecordingsusedtotrain

chatbotsforcustomerservice.Withglobal

connectivity,datacollectioncontinuesto

providetheessentialrawmaterialforfutureAIapplications.

Whendataiscollected,itisusually

unstructured.Highlyskilleddataengineers

willpre-processthedataintoausableformat,but‘datalabelers’areneededtolabeland

classifydatasothatitisusable.Labelled

andannotateddatasetsarecriticalforthe

developmentandeffectivenessofmachine

learningmodels.Workersinvolvedindata

enrichmentcarryoutanarrayoftasksthat

includemarkingradiologyscanstoaidin

creatingAIsystemscapableofdetecting

cancer;categorizingtoxicandunsuitable

onlinecontenttoimprovecontentmoderationalgorithmsordiminishthenegativityinlargelanguagemodelresponses;annotating

videofootagefromdrivingsessionstotrain

autonomousvehicles;editinglargelanguagemodeloutputstoboosttheirfunctionality;andmore.4

Contentmoderationistheprocessof

monitoringandfilteringuser-generated

contentondigitalplatforms,suchassocialmedia,forums,andwebsites,toensurethatitcomplieswiththeplatform’sguidelinesandpolicies.Thegoalofcontentmoderationistomaintainasafe,respectful,andpositive

environmentforallusersbyremovingor

Figure6:ValuechainofAI

3

Note:Orangerepresentstheactivitiesthathavelowervalue-added.

Source:Authors’elaboration.

2

4

7

6

5

1

4ValuingDataEnrichmentWorkers:TheCaseforaHuman-CentricApproachtoAIDevelopment|UnitedNations

MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork|11

flaggingcontentthatisinappropriate,offensive,harmful,orillegal.Contentmoderationcanbeperformedmanuallybyhumanmoderators

orautomaticallybyusingalgorithmsand

machinelearningtools.Thetypesofcontentthatmaybesubjecttomoderationcanvary

widely,includingbutnotlimitedtohate

speech,harassment,violence,nudity,andfalseinformation.Evenwiththeuseofalgorithmsandmachinelearningtoolsforcontent

moderation,thereistypicallyalwaysahumaninvolvedintheprocess.Thesetechnologiescanhelpautomateandscalethemoderationprocess,buttheyarenotperfectandcan

sometimesmakemistakesormissnuancesthatahumanmoderatorwouldbeabletopickupon.

Inmanycases,algorithmsareusedtoflag

orprioritizecontentforreviewbyhuman

moderators,whothenmakethefinaldecisiononwhetherthecontentshouldberemovedorallowedtoremainontheplatform.Additionally,humanmoderatorsmayalsobeinvolvedin

trainingandimprovingthealgorithms,by

providingfeedbackandlabellingdatathatcanbeusedtorefinethesystem’saccuracyand

effectiveness.Individualstaskedwithcontentmoderationdutiesinsocialmediaplatforms

oftensufferfromanxiety,depression,andpost-traumaticstressdisorder,adirectconsequenceoftheircontinuousexposuretodistressing

materialssuchasmurder,suicide,sexualassault,orchildabusevideos.

Theseexamplesdemonstratehowhumansareintegraltotheprovisionofservicesmarketedordescribedas“artificialintelligence”.Indeed,JeffBezosdescribedAmazon’sMechanical

Turk(AMT)platformas“artificial-artificial-

intelligence”asitwashumanintelligence

thatwasprovidingthelabour-intensivework

neededforartificialintelligencesystemsto

operate.AsdescribedontheAMTsite,the

platformprovides“anon-demand,scalable,

humanworkforcetocompletejobsthat

humanscandobetterthancomputers,for

example,recognizingobjectsinphotos”.5

Workersontheplatformareaccessiblethroughanapplicationprogramminginterface(API),

allowingprogrammerstocallonworkerswith

afewsimplelinesofcodewhenworkingonanalgorithm[11].

InadditiontoplatformssuchasAMTand

Appen,datalabelerssometimesworkthroughthird-partycompanieshiredbyleading

techfirms,inasubcontractingrelationship.

Althoughtherearestillmanydatalabelers

workingintheUnitedStatesinEurope,muchoftheworkisbeingdoneindevelopingcountries,giventhelowremunerationassociatedwiththework.Whileprecisefiguresonthenumbersofpersonsworkingasdatalabelersdonotexist,estimatesrangeinthetensofmillions,and

demandforsuchworkislikelytocontinueasAIdatasetsandtrainingneedsgrow[12].ThesizeofthemarketisestimatedatbetweenUS$1-$3billionandlikelytoexperiencedouble-digitgrowthoverthenext5years[13].

Datalabelingworkdoesnotrequiremany

qualifications,besidesliteracy,digitalskills

andaccesstocomputer(ormobiledevice)andinternet.StudiesofearningsofonlineplatformworkersintheUSthatperformthiswork,

regularlyreportmedianearningsofroughly$2-$3perhour,orwellbelowthefederalminimumwageofUS$7.25[14];[11].Giventhelowlevelofpay,itisunsurprisingthatmuchofthisworkhasmovedtodevelopingcountries.

Butevenfromadevelopingcountry

perspective,theearningsarelow,particularlyconsideringtheskillleveloftheworkforce,

withmanyworkersholdinguniversityand

post-graduatedegrees[11].Fortheworkerswhoworkthroughdigitallabourplatforms–andnotbusinessprocessoutsourcingfirms–thereistheaddedconcernthattheyare

hiredasindependentcontractorsandarethusnotcoveredbytheprotectionsandbenefits

emanatingfromastandardemployment

relationship.Moreover,analysesofearningsdifferentialsbetweenworkersinIndiadoingsimilartypesofdataannotationworkrevealedthatplatformworkersearnedtwo-thirds

lessthancomparable,non-platformworker

employees,evenbeforeaccountingforotherbenefitssuchassocialinsurancecontributions[15].

5SeeAmazonMechanicalTurkAPIReference-AmazonMechanicalTurk.Accessedon9June2024.

12|MindtheAIDivide:ShapingaGlobalPerspectiveontheFutureofWork

Butevenamongbusinessprocessoutsourcingfirms,thereareconcernsabouttheworking

conditionsoftheseworkers,withonecase

studyofadataannotationenterprisewith

officesinKenyarevealinglowpay,insecureworkandgender-basedworkplaceviolence[16].Furthermore,thestudyarguedthatthedataannotationskillsusedinthislineofworkwerenotessentiallytransferable,questioningthecareer-enhancingimpactofthislineof

work.

Movingalongthevaluechain,thesubsequentparts–modeldesign,modeltrainingand

tuning,deploymentandmaintenance–representacontrastingpicturewiththe

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論