2023-2024學(xué)年遼寧省撫順五十中學(xué)中考聯(lián)考數(shù)學(xué)試卷含解析_第1頁
2023-2024學(xué)年遼寧省撫順五十中學(xué)中考聯(lián)考數(shù)學(xué)試卷含解析_第2頁
2023-2024學(xué)年遼寧省撫順五十中學(xué)中考聯(lián)考數(shù)學(xué)試卷含解析_第3頁
2023-2024學(xué)年遼寧省撫順五十中學(xué)中考聯(lián)考數(shù)學(xué)試卷含解析_第4頁
2023-2024學(xué)年遼寧省撫順五十中學(xué)中考聯(lián)考數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2023-2024學(xué)年遼寧省撫順五十中學(xué)中考聯(lián)考數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.下面計算中,正確的是()A.(a+b)2=a2+b2B.3a+4a=7a2C.(ab)3=ab3D.a(chǎn)2?a5=a72.如圖,等腰直角三角形的頂點A、C分別在直線a、b上,若a∥b,∠1=30°,則∠2的度數(shù)為()A.30° B.15° C.10° D.20°3.?dāng)?shù)據(jù)”1,2,1,3,1”的眾數(shù)是()A.1B.1.5C.1.6D.34.下列各組數(shù)中,互為相反數(shù)的是()A.﹣1與(﹣1)2 B.(﹣1)2與1 C.2與 D.2與|﹣2|5.下列運(yùn)算正確的是()A.a(chǎn)3?a2=a6 B.(2a)3=6a3C.(a﹣b)2=a2﹣b2 D.3a2﹣a2=2a26.如圖,半徑為1的圓O1與半徑為3的圓O2相內(nèi)切,如果半徑為2的圓與圓O1和圓O2都相切,那么這樣的圓的個數(shù)是()A.1 B.2 C.3 D.47.據(jù)媒體報道,我國最新研制的“察打一體”無人機(jī)的速度極快,經(jīng)測試最高速度可達(dá)204000米/分,這個數(shù)用科學(xué)記數(shù)法表示,正確的是()A.204×103B.20.4×104C.2.04×105D.2.04×1068.用圓心角為120°,半徑為6cm的扇形紙片卷成一個圓錐形無底紙帽(如圖所示),則這個紙帽的高是()A.cm B.3cm C.4cm D.4cm9.1.在以下綠色食品、回收、節(jié)能、節(jié)水四個標(biāo)志中,是軸對稱圖形的是()A. B. C. D.10.下列分式中,最簡分式是()A. B. C. D.11.的相反數(shù)是()A. B.2 C. D.12.圖中三視圖對應(yīng)的正三棱柱是()A. B. C. D.二、填空題:(本大題共6個小題,每小題4分,共24分.)13.不等式組的解集是____________;14.關(guān)于x的一元二次方程(k-1)x2-2x+1=0有兩個不相等的實數(shù)根,則實數(shù)k的取值范圍是_______.15.正八邊形的中心角為______度.16.如圖,已知AB∥CD,F(xiàn)為CD上一點,∠EFD=60°,∠AEC=2∠CEF,若6°<∠BAE<15°,∠C的度數(shù)為整數(shù),則∠C的度數(shù)為_____.17.一組數(shù)據(jù)4,3,5,x,4,5的眾數(shù)和中位數(shù)都是4,則x=_____.18.不等式≥-1的正整數(shù)解為________________.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)(1)計算:|﹣3|﹣﹣2sin30°+(﹣)﹣2(2)化簡:.20.(6分)如圖,足球場上守門員在處開出一高球,球從離地面1米的處飛出(在軸上),運(yùn)動員乙在距點6米的處發(fā)現(xiàn)球在自己頭的正上方達(dá)到最高點,距地面約4米高,球落地后又一次彈起.據(jù)實驗測算,足球在草坪上彈起后的拋物線與原來的拋物線形狀相同,最大高度減少到原來最大高度的一半.求足球開始飛出到第一次落地時,該拋物線的表達(dá)式.足球第一次落地點距守門員多少米?(?。┻\(yùn)動員乙要搶到第二個落點,他應(yīng)再向前跑多少米?21.(6分)已知拋物線y=x2+bx+c(b,c是常數(shù))與x軸相交于A,B兩點(A在B的左側(cè)),與y軸交于點C.(1)當(dāng)A(﹣1,0),C(0,﹣3)時,求拋物線的解析式和頂點坐標(biāo);(2)P(m,t)為拋物線上的一個動點.①當(dāng)點P關(guān)于原點的對稱點P′落在直線BC上時,求m的值;②當(dāng)點P關(guān)于原點的對稱點P′落在第一象限內(nèi),P′A2取得最小值時,求m的值及這個最小值.22.(8分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.(1)求m的值和反比例函數(shù)的表達(dá)式;(2)直線y=n沿y軸方向平移,當(dāng)n為何值時,△BMN的面積最大?23.(8分)如圖,已知四邊形ABCD是平行四邊形,延長BA至點E,使AE=AB,連接DE,AC(1)求證:四邊形ACDE為平行四邊形;(2)連接CE交AD于點O,若AC=AB=3,cosB=,求線段CE的長.24.(10分)我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;若改變(2)中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明)25.(10分)某學(xué)校八、九兩個年級各有學(xué)生180人,為了解這兩個年級學(xué)生的體質(zhì)健康情況,進(jìn)行了抽樣調(diào)查,具體過程如下:收集數(shù)據(jù)從八、九兩個年級各隨機(jī)抽取20名學(xué)生進(jìn)行體質(zhì)健康測試,測試成績(百分制)如下:八年級7886748175768770759075798170748086698377九年級9373888172819483778380817081737882807040整理、描述數(shù)據(jù)將成績按如下分段整理、描述這兩組樣本數(shù)據(jù):成績(x)40≤x≤4950≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100八年級人數(shù)0011171九年級人數(shù)1007102(說明:成績80分及以上為體質(zhì)健康優(yōu)秀,70~79分為體質(zhì)健康良好,60~69分為體質(zhì)健康合格,60分以下為體質(zhì)健康不合格)分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如表所示:年級平均數(shù)中位數(shù)眾數(shù)方差八年級78.377.57533.6九年級7880.5a52.1(1)表格中a的值為______;請你估計該校九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為多少?根據(jù)以上信息,你認(rèn)為哪個年級學(xué)生的體質(zhì)健康情況更好一些?請說明理由.(請從兩個不同的角度說明推斷的合理性)26.(12分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸相交于點,與反比例函數(shù)的圖象相交于點,.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)根據(jù)圖象,直接寫出時,的取值范圍;(3)在軸上是否存在點,使為等腰三角形,如果存在,請求點的坐標(biāo),若不存在,請說明理由.27.(12分)已知:如圖,在□ABCD中,點G為對角線AC的中點,過點G的直線EF分別交邊AB、CD于點E、F,過點G的直線MN分別交邊AD、BC于點M、N,且∠AGE=∠CGN.(1)求證:四邊形ENFM為平行四邊形;(2)當(dāng)四邊形ENFM為矩形時,求證:BE=BN.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

直接利用完全平方公式以及合并同類項法則、積的乘方運(yùn)算法則分別化簡得出答案.【詳解】A.

(a+b)2=a2+b2+2ab,故此選項錯誤;B.

3a+4a=7a,故此選項錯誤;C.

(ab)3=a3b3,故此選項錯誤;D.

a2a5=a7,正確。故選:D.【點睛】本題考查了冪的乘方與積的乘方,合并同類項,同底數(shù)冪的乘法,完全平方公式,解題的關(guān)鍵是掌握它們的概念進(jìn)行求解.2、B【解析】分析:由等腰直角三角形的性質(zhì)和平行線的性質(zhì)求出∠ACD=60°,即可得出∠2的度數(shù).詳解:如圖所示:∵△ABC是等腰直角三角形,∴∠BAC=90°,∠ACB=45°,∴∠1+∠BAC=30°+90°=120°,∵a∥b,∴∠ACD=180°-120°=60°,∴∠2=∠ACD-∠ACB=60°-45°=15°;故選B.點睛:本題考查了平行線的性質(zhì)、等腰直角三角形的性質(zhì);熟練掌握等腰直角三角形的性質(zhì),由平行線的性質(zhì)求出∠ACD的度數(shù)是解決問題的關(guān)鍵.3、A【解析】

眾數(shù)指一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),根據(jù)眾數(shù)的定義就可以求解.【詳解】在這一組數(shù)據(jù)中1是出現(xiàn)次數(shù)最多的,故眾數(shù)是1.故選:A.【點睛】本題為統(tǒng)計題,考查眾數(shù)的意義.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個.4、A【解析】

根據(jù)相反數(shù)的定義,對每個選項進(jìn)行判斷即可.【詳解】解:A、(﹣1)2=1,1與﹣1互為相反數(shù),正確;B、(﹣1)2=1,故錯誤;C、2與互為倒數(shù),故錯誤;D、2=|﹣2|,故錯誤;故選:A.【點睛】本題考查了相反數(shù)的定義,解題的關(guān)鍵是掌握相反數(shù)的定義.5、D【解析】試題分析:根據(jù)同底數(shù)冪相乘,底數(shù)不變指數(shù)相加求解求解;根據(jù)積的乘方,等于把積的每一個因式分別乘方,再把所得的冪相乘求解;根據(jù)完全平方公式求解;根據(jù)合并同類項法則求解.解:A、a3?a2=a3+2=a5,故A錯誤;B、(2a)3=8a3,故B錯誤;C、(a﹣b)2=a2﹣2ab+b2,故C錯誤;D、3a2﹣a2=2a2,故D正確.故選D.點評:本題考查了完全平方公式,合并同類項法則,同底數(shù)冪的乘法,積的乘方的性質(zhì),熟記性質(zhì)與公式并理清指數(shù)的變化是解題的關(guān)鍵.6、C【解析】分析:過O1、O2作直線,以O(shè)1O2上一點為圓心作一半徑為2的圓,將這個圓從左側(cè)與圓O1、圓O2同時外切的位置(即圓O3)開始向右平移,觀察圖形,并結(jié)合三個圓的半徑進(jìn)行分析即可得到符合要求的圓的個數(shù).詳解:如下圖,(1)當(dāng)半徑為2的圓同時和圓O1、圓O2外切時,該圓在圓O3的位置;(2)當(dāng)半徑為2的圓和圓O1、圓O2都內(nèi)切時,該圓在圓O4的位置;(3)當(dāng)半徑為2的圓和圓O1外切,而和圓O2內(nèi)切時,該圓在圓O5的位置;綜上所述,符合要求的半徑為2的圓共有3個.故選C.點睛:保持圓O1、圓O2的位置不動,以直線O1O2上一個點為圓心作一個半徑為2的圓,觀察其從左至右平移過程中與圓O1、圓O2的位置關(guān)系,結(jié)合三個圓的半徑大小即可得到本題所求答案.7、C【解析】試題分析:204000米/分,這個數(shù)用科學(xué)記數(shù)法表示2.04×105,故選C.考點:科學(xué)記數(shù)法—表示較大的數(shù).8、C【解析】

利用扇形的弧長公式可得扇形的弧長;讓扇形的弧長除以2π即為圓錐的底面半徑,利用勾股定理可得圓錐形筒的高.【詳解】L==4π(cm);圓錐的底面半徑為4π÷2π=2(cm),∴這個圓錐形筒的高為(cm).故選C.【點睛】此題考查了圓錐的計算,用到的知識點為:圓錐側(cè)面展開圖的弧長=;圓錐的底面周長等于側(cè)面展開圖的弧長;圓錐的底面半徑,母線長,高組成以母線長為斜邊的直角三角形.9、D【解析】

根據(jù)軸對稱圖形的概念求解.如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸.【詳解】A、不是軸對稱圖形,故A不符合題意;B、不是軸對稱圖形,故B不符合題意;C、不是軸對稱圖形,故C不符合題意;D、是軸對稱圖形,故D符合題意.故選D.【點睛】本題主要考查軸對稱圖形的知識點.確定軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形兩部分折疊后可重合.10、A【解析】試題分析:選項A為最簡分式;選項B化簡可得原式==;選項C化簡可得原式==;選項D化簡可得原式==,故答案選A.考點:最簡分式.11、B【解析】

根據(jù)相反數(shù)的性質(zhì)可得結(jié)果.【詳解】因為-2+2=0,所以﹣2的相反數(shù)是2,故選B.【點睛】本題考查求相反數(shù),熟記相反數(shù)的性質(zhì)是解題的關(guān)鍵.12、A【解析】

由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側(cè)棱在正前方,從而求解【詳解】解:由俯視圖得到正三棱柱兩個底面在豎直方向,由主視圖得到有一條側(cè)棱在正前方,于是可判定A選項正確.故選A.【點睛】本題考查由三視圖判斷幾何體,掌握幾何體的三視圖是本題的解題關(guān)鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、﹣9<x≤﹣1【解析】

分別求出兩個不等式的解集,再求其公共解集.【詳解】,解不等式①,得:x≤-1,解不等式②,得:x>-9,所以不等式組的解集為:-9<x≤-1,故答案為:-9<x≤-1.【點睛】本題考查一元一次不等式組的解法,屬于基礎(chǔ)題.求不等式組的解集,要遵循以下原則:同大取較大,同小取較小,小大大小中間找,大大小小解不了.14、k<2且k≠1【解析】試題解析:∵關(guān)于x的一元二次方程(k-1)x2-2x+1=0有兩個不相等的實數(shù)根,∴k-1≠0且△=(-2)2-4(k-1)>0,解得:k<2且k≠1.考點:1.根的判別式;2.一元二次方程的定義.15、45°【解析】

運(yùn)用正n邊形的中心角的計算公式計算即可.【詳解】解:由正n邊形的中心角的計算公式可得其中心角為,故答案為45°.【點睛】本題考查了正n邊形中心角的計算.16、36°或37°.【解析】分析:先過E作EG∥AB,根據(jù)平行線的性質(zhì)可得∠AEF=∠BAE+∠DFE,再設(shè)∠CEF=x,則∠AEC=2x,根據(jù)6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,進(jìn)而得到∠C的度數(shù).詳解:如圖,過E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,設(shè)∠CEF=x,則∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度數(shù)為整數(shù),∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案為:36°或37°.點睛:本題主要考查了平行線的性質(zhì)以及三角形外角性質(zhì)的運(yùn)用,解決問題的關(guān)鍵是作平行線,解題時注意:兩直線平行,內(nèi)錯角相等.17、1【解析】

一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做眾數(shù),由此可得出答案.【詳解】∵一組數(shù)據(jù)1,3,5,x,1,5的眾數(shù)和中位數(shù)都是1,∴x=1,故答案為1.【點睛】本題考查了眾數(shù)的知識,解答本題的關(guān)鍵是掌握眾數(shù)的定義.18、1,2,1.【解析】

去分母,移項,合并同類項,系數(shù)化成1即可求出不等式的解集,根據(jù)不等式的解集即可求出答案.【詳解】,

∴1-x≥-2,

∴-x≥-1,

∴x≤1,

∴不等式的正整數(shù)解是1,2,1,

故答案為:1,2,1.【點睛】本題考查了解一元一次不等式和一元一次不等式的整數(shù)解,關(guān)鍵是求出不等式的解集.三、解答題:(本大題共9個小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、(1)2;(2)x﹣y.【解析】分析:(1)本題涉及了二次根式的化簡、絕對值、負(fù)指數(shù)冪及特殊三角函數(shù)值,在計算時,需要針對每個知識點分別進(jìn)行計算,然后根據(jù)實數(shù)的運(yùn)算法則求得計算結(jié)果.(2)原式括號中兩項利用同分母分式的減法法則計算,同時利用除法法則變形,約分即可得到結(jié)果.詳解:(1)原式=3﹣4﹣2×+4=2;(2)原式=?=x﹣y.點睛:(1)本題考查實數(shù)的綜合運(yùn)算能力,是各地中考題中常見的計算題型.解決此類題目的關(guān)鍵是熟練掌握負(fù)整數(shù)指數(shù)冪、二次根式的化簡、絕對值及特殊三角函數(shù)值等考點的運(yùn)算;(2)考查了分式的混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.20、(1)(或)(2)足球第一次落地距守門員約13米.(3)他應(yīng)再向前跑17米.【解析】

(1)依題意代入x的值可得拋物線的表達(dá)式.(2)令y=0可求出x的兩個值,再按實際情況篩選.(3)本題有多種解法.如圖可得第二次足球彈出后的距離為CD,相當(dāng)于將拋物線AEMFC向下平移了2個單位可得解得x的值即可知道CD、BD.【詳解】解:(1)如圖,設(shè)第一次落地時,拋物線的表達(dá)式為由已知:當(dāng)時即表達(dá)式為(或)(2)令(舍去).足球第一次落地距守門員約13米.(3)解法一:如圖,第二次足球彈出后的距離為根據(jù)題意:(即相當(dāng)于將拋物線向下平移了2個單位)解得(米).答:他應(yīng)再向前跑17米.21、(1)拋物線的解析式為y=x3﹣3x﹣1,頂點坐標(biāo)為(1,﹣4);(3)①m=;②P′A3取得最小值時,m的值是,這個最小值是.【解析】

(1)根據(jù)A(﹣1,3),C(3,﹣1)在拋物線y=x3+bx+c(b,c是常數(shù))的圖象上,可以求得b、c的值;(3)①根據(jù)題意可以得到點P′的坐標(biāo),再根據(jù)函數(shù)解析式可以求得點B的坐標(biāo),進(jìn)而求得直線BC的解析式,再根據(jù)點P′落在直線BC上,從而可以求得m的值;②根據(jù)題意可以表示出P′A3,從而可以求得當(dāng)P′A3取得最小值時,m的值及這個最小值.【詳解】解:(1)∵拋物線y=x3+bx+c(b,c是常數(shù))與x軸相交于A,B兩點,與y軸交于點C,A(﹣1,3),C(3,﹣1),∴,解得:,∴該拋物線的解析式為y=x3﹣3x﹣1.∵y=x3﹣3x﹣1=(x﹣1)3﹣4,∴拋物線的頂點坐標(biāo)為(1,﹣4);(3)①由P(m,t)在拋物線上可得:t=m3﹣3m﹣1.∵點P和P′關(guān)于原點對稱,∴P′(﹣m,﹣t),當(dāng)y=3時,3=x3﹣3x﹣1,解得:x1=﹣1,x3=1,由已知可得:點B(1,3).∵點B(1,3),點C(3,﹣1),設(shè)直線BC對應(yīng)的函數(shù)解析式為:y=kx+d,,解得:,∴直線BC的直線解析式為y=x﹣1.∵點P′落在直線BC上,∴﹣t=﹣m﹣1,即t=m+1,∴m3﹣3m﹣1=m+1,解得:m=;②由題意可知,點P′(﹣m,﹣t)在第一象限,∴﹣m>3,﹣t>3,∴m<3,t<3.∵二次函數(shù)的最小值是﹣4,∴﹣4≤t<3.∵點P(m,t)在拋物線上,∴t=m3﹣3m﹣1,∴t+1=m3﹣3m,過點P′作P′H⊥x軸,H為垂足,有H(﹣m,3).又∵A(﹣1,3),則P′H3=t3,AH3=(﹣m+1)3.在Rt△P′AH中,P′A3=AH3+P′H3,∴P′A3=(﹣m+1)3+t3=m3﹣3m+1+t3=t3+t+4=(t+)3+,∴當(dāng)t=﹣時,P′A3有最小值,此時P′A3=,∴=m3﹣3m﹣1,解得:m=.∵m<3,∴m=,即P′A3取得最小值時,m的值是,這個最小值是.【點睛】本題是二次函數(shù)綜合題,解答本題的關(guān)鍵是明確題意,找出所求問題需要的條件,利用二次函數(shù)的性質(zhì)解答.22、(1)m=8,反比例函數(shù)的表達(dá)式為y=;(2)當(dāng)n=3時,△BMN的面積最大.【解析】

(1)求出點A的坐標(biāo),利用待定系數(shù)法即可解決問題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過點A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點M,N的坐標(biāo)為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時,△BMN的面積最大.23、(1)證明見解析;(2)4.【解析】

(1)已知四邊形ABCD是平行四邊形,根據(jù)平行四邊形的性質(zhì)可得AB∥CD,AB=CD,又因AE=AB,可得AE=CD,根據(jù)一組對邊平行且相等的四邊形是平行四邊形即可判定四邊形ACDE是平行四邊形;(2)連接EC,易證△BEC是直角三角形,解直角三角形即可解決問題.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD,∵AE=AB,∴AE=CD,∵AE∥CD,∴四邊形ACDE是平行四邊形.(2)如圖,連接EC.∵AC=AB=AE,∴△EBC是直角三角形,∵cosB==,BE=6,∴BC=2,∴EC===4.【點睛】本題考查平行四邊形的性質(zhì)和判定、直角三角形的判定、勾股定理、銳角三角函數(shù)等知識,解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識解決問題,屬于中考??碱}型.24、(1)證明見解析;(2)四邊形EFGH是菱形,證明見解析;(3)四邊形EFGH是正方形.【解析】

(1)如圖1中,連接BD,根據(jù)三角形中位線定理只要證明EH∥FG,EH=FG即可.(2)四邊形EFGH是菱形.先證明△APC≌△BPD,得到AC=BD,再證明EF=FG即可.(3)四邊形EFGH是正方形,只要證明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可證明∠COD=∠CPD=90°,再根據(jù)平行線的性質(zhì)即可證明.【詳解】(1)證明:如圖1中,連接BD.∵點E,H分別為邊AB,DA的中點,∴EH∥BD,EH=BD,∵點F,G分別為邊BC,CD的中點,∴FG∥BD,F(xiàn)G=BD,∴EH∥FG,EH=GF,∴中點四邊形EFGH是平行四邊形.(2)四邊形EFGH是菱形.證明:如圖2中,連接AC,BD.∵∠APB=∠CPD,∴∠APB+∠APD=∠CPD+∠APD,即∠APC=∠BPD,在△APC和△BPD中,∵AP=PB,∠APC=∠BPD,PC=PD,∴△APC≌△BPD,∴AC=BD.∵點E,F(xiàn),G分別為邊AB,BC,CD的中點,∴EF=AC,F(xiàn)G=BD,∵四邊形EFGH是平行四邊形,∴四邊形EFGH是菱形.(3)四邊形EFGH是正方形.證明:如圖2中,設(shè)AC與BD交于點O.AC與PD交于點M,AC與EH交于點N.∵△APC≌△BPD,∴∠ACP=∠BDP,∵∠DMO=∠CMP,∴∠COD=∠CPD=90°,∵EH∥BD,AC∥HG,∴∠EHG=∠ENO=∠BOC=∠DOC=90°,∵四邊形EFGH是菱形,∴四邊形EFGH是正方形.考點:平行四邊形的判定與性質(zhì);中點四邊形.25、(1)81;(2)108人;(3)見解析.【解析】

(1)根據(jù)眾數(shù)的概念解答;(2)求出九年級學(xué)生體質(zhì)健康的優(yōu)秀率,計算即可;(3)分別從不同的角度進(jìn)行評價.【詳解】解:(1)由測試成績可知,81分出現(xiàn)的次數(shù)最多,∴a=81,故答案為:81;(2)九年級學(xué)生體質(zhì)健康的優(yōu)秀率為:,九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為:180×60%=108(人),答:估計該校九年級體質(zhì)健康優(yōu)秀的學(xué)生人數(shù)為108人;(3)①因為八年級學(xué)生的平均成績高于九年級的平均成績,且八年級學(xué)生成績的方差小于九年級的方差,所以八年級學(xué)生的體質(zhì)健康情況更好一些.②因為九年級學(xué)生的優(yōu)秀率(60%)高于八年級的優(yōu)秀率(40%),且九年級學(xué)生成績的眾數(shù)或中位數(shù)高于八年級的眾數(shù)或中位數(shù),所以九年級學(xué)生的體質(zhì)健康情況更好一些.【點睛】本題考查的是用樣本估計總體、方差、平均數(shù)、眾數(shù)和中位數(shù)的概念和性質(zhì),正確求出樣本的眾數(shù)、理解方差和平均數(shù)、眾數(shù)、中位線的性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論