版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
3.1回歸分析的基本思想及其初步應(yīng)用比《數(shù)學(xué)3》中“回歸”增加的內(nèi)容數(shù)學(xué)3——統(tǒng)計(jì)畫散點(diǎn)圖了解最小二乘法的思想求回歸直線方程y=bx+a用回歸直線方程解決應(yīng)用問(wèn)題選修2-3——統(tǒng)計(jì)案例引入線性回歸模型y=bx+a+e了解模型中隨機(jī)誤差項(xiàng)e產(chǎn)生的原因了解殘差圖的作用了解相關(guān)指數(shù)R2
和模型擬合的效果之間的關(guān)系利用線性回歸模型解決一類非線性回歸問(wèn)題正確理解分析方法與結(jié)果最小二乘法:稱為樣本點(diǎn)的中心?;貧w直線過(guò)樣本點(diǎn)中心例1從某大學(xué)中隨機(jī)選取8名女大學(xué)生,其身高和體重?cái)?shù)據(jù)如表1-1所示。編號(hào)12345678身高/cm165165157170175165155170體重/kg4857505464614359求根據(jù)一名女大學(xué)生的身高預(yù)報(bào)她的體重的回歸方程,并預(yù)報(bào)一名身高為172cm的女大學(xué)生的體重。案例1:女大學(xué)生的身高與體重解:1、選取身高為自變量x,體重為因變量y,作散點(diǎn)圖:2、由散點(diǎn)圖知道身高和體重有比較好的線性相關(guān)關(guān)系,因此可以用線性回歸方程刻畫它們之間的關(guān)系。分析:由于問(wèn)題中要求根據(jù)身高預(yù)報(bào)體重,因此選取身高為自變量,體重為因變量.2.回歸方程:1.散點(diǎn)圖;探究:身高為172cm的女大學(xué)生的體重一定是60.316kg嗎?如果不是,你能解析一下原因嗎?答:身高為172cm的女大學(xué)生的體重不一定是60.316kg,但一般可以認(rèn)為她的體重接近于60.316kg。即,用這個(gè)回歸方程不能給出每個(gè)身高為172cm的女大學(xué)生的體重的預(yù)測(cè)值,只能給出她們平均體重的值。我們可以用下面的線性回歸模型來(lái)表示:y=bx+a+e,
(3)其中a和b為模型的未知參數(shù),e稱為隨機(jī)誤差。y=bx+a+e,E(e)=0,D(e)=
(4)
在線性回歸模型(4)中,隨機(jī)誤差e的方差越小,通過(guò)回歸直線(5)預(yù)報(bào)真實(shí)值y的精度越高。隨機(jī)誤差是引起預(yù)報(bào)值與真實(shí)值y之間的誤差的原因之一,其大小取決于隨機(jī)誤差的方差。另一方面,由于公式(1)和(2)中和為截距和斜率的估計(jì)值,它們與真實(shí)值a和b之間也存在誤差,這種誤差是引起預(yù)報(bào)值與真實(shí)值y之間誤差的另一個(gè)原因。思考:產(chǎn)生隨機(jī)誤差項(xiàng)e的原因是什么?隨機(jī)誤差e的來(lái)源(可以推廣到一般):1、用線性回歸模型近似真實(shí)模型所引起的誤差;2、忽略了其它因素的影響:影響身高y的因素不只是體重x,可能還包括遺傳基因、飲食習(xí)慣、生長(zhǎng)環(huán)境等因素;3、身高y的觀測(cè)誤差。
以上三項(xiàng)誤差越小,說(shuō)明我們的回歸模型的擬合效果越好。探究:e
是
用預(yù)報(bào)真實(shí)值Y的隨機(jī)誤差,它是一個(gè)不可觀測(cè)的量,那么怎樣研究隨機(jī)誤差呢?回歸模型:其估計(jì)值為而言,它們的隨機(jī)誤差對(duì)于樣本點(diǎn)顯然,R2的值越大,說(shuō)明殘差平方和越小,也就是說(shuō)模型擬合效果越好。在線性回歸模型中,R2表示解析變量對(duì)預(yù)報(bào)變量變化的貢獻(xiàn)率。
R2越接近1,表示回歸的效果越好(因?yàn)镽2越接近1,表示解析變量和預(yù)報(bào)變量的線性相關(guān)性越強(qiáng))。
如果某組數(shù)據(jù)可能采取幾種不同回歸方程進(jìn)行回歸分析,則可以通過(guò)比較R2的值來(lái)做出選擇,即選取R2較大的模型作為這組數(shù)據(jù)的模型。總的來(lái)說(shuō):相關(guān)指數(shù)R2是度量模型擬合效果的一種指標(biāo)。在線性模型中,它代表自變量刻畫預(yù)報(bào)變量的能力。我們可以用相關(guān)指數(shù)R2來(lái)刻畫回歸的效果,其計(jì)算公式是1354總計(jì)0.36128.361殘差變量0.64225.639隨機(jī)誤差比例平方和來(lái)源表1-3從表3-1中可以看出,解析變量對(duì)總效應(yīng)約貢獻(xiàn)了64%,即R20.64,可以敘述為“身高解析了64%的體重變化”,而隨機(jī)誤差貢獻(xiàn)了剩余的36%。所以,身高對(duì)體重的效應(yīng)比隨機(jī)誤差的效應(yīng)大得多。我們可以用相關(guān)指數(shù)R2來(lái)刻畫回歸的效果,其計(jì)算公式是一般地,建立回歸模型的基本步驟為:(1)確定研究對(duì)象,明確哪個(gè)變量是解析變量,哪個(gè)變量是預(yù)報(bào)變量。(2)畫出確定好的解析變量和預(yù)報(bào)變量的散點(diǎn)圖,觀察它們之間的關(guān)系(如是否存在線性關(guān)系等)。(3)由經(jīng)驗(yàn)確定回歸方程的類型(如我們觀察到數(shù)據(jù)呈線性關(guān)系,則選用線性回歸方程y=bx+a).(4)按一定規(guī)則估計(jì)回歸方程中的參數(shù)(如最小二乘法)。(5)得出結(jié)果后分析殘差圖是否有異常(個(gè)別數(shù)據(jù)對(duì)應(yīng)殘差過(guò)大,或殘差呈現(xiàn)不隨機(jī)的規(guī)律性,等等),過(guò)存在異常,則檢查數(shù)據(jù)是否有誤,或模型是否合適等。相關(guān)系數(shù)
1.計(jì)算公式2.相關(guān)系數(shù)的性質(zhì)(1)|r|≤1.(2)|r|越接近于1,相關(guān)程度越大;|r|越接近于0,相關(guān)程度越?。畣?wèn)題:達(dá)到怎樣程度,x、y線性相關(guān)呢?它們的相關(guān)程度怎樣呢?相關(guān)系數(shù)r>0正相關(guān);r<0負(fù)相關(guān).通常,r∈[-1,-0.75]--負(fù)相關(guān)很強(qiáng);
r∈[0.75,1]—正相關(guān)很強(qiáng);
r∈[-0.75,-0.3]--負(fù)相關(guān)一般;r∈[0.3,0.75]—正相關(guān)一般;r∈[-0.25,0.25]--相關(guān)性較弱;例2:一只紅鈴蟲的產(chǎn)卵數(shù)y與溫度x有關(guān),現(xiàn)收集了7組觀測(cè)數(shù)據(jù),試建立y與x之間的回歸方程解:1)作散點(diǎn)圖;從散點(diǎn)圖中可以看出產(chǎn)卵數(shù)和溫度之間的關(guān)系并不能用線性回歸模型來(lái)很好地近似。這些散點(diǎn)更像是集中在一條指數(shù)曲線或二次曲線的附近。解:令則z=bx+a,(a=lnc1,b=c2),列出變換后數(shù)據(jù)表并畫出x與z的散點(diǎn)圖x和z之間的關(guān)系可以用線性回歸模型來(lái)擬合x21232527293235z1.9462.3983.0453.1784.194.7455.7842)用y=c3x2+c4模型,令,則y=c3t+c4,列出變換后數(shù)據(jù)表并畫出t與y的散點(diǎn)圖散點(diǎn)并不集中在一條直線的附近,因此用線性回歸模型擬合他們的效果不是最好的。t44152962572984110241225y711212466115325殘差表編號(hào)1234567x21232527293235y711212466115325e(1)0.52-0.1671.76-9.1498.889-14.15332.928e(2)47.719.397-5.835-41.003-40.107-58.26877.965非線性回歸方程二次回歸方程殘差公式在此處可以引導(dǎo)學(xué)生體會(huì)應(yīng)用統(tǒng)計(jì)方法
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 中考備考-第22章單元測(cè)評(píng)-中考備考-初中數(shù)學(xué)7-9上下冊(cè)
- 2025年揚(yáng)州道路貨運(yùn)駕駛員從業(yè)資格考試題庫(kù)
- 交通運(yùn)輸資產(chǎn)管理合同(2篇)
- 產(chǎn)品支持服務(wù)合同(2篇)
- 信息技術(shù)招投標(biāo)報(bào)價(jià)承諾法實(shí)踐
- 安全生產(chǎn)招投標(biāo)服務(wù)質(zhì)量表
- 創(chuàng)業(yè)項(xiàng)目評(píng)估投資管理辦法
- 食品行業(yè)裝卸衛(wèi)生要求
- 投資決策化管理辦法
- 休閑娛樂元器件選用管理辦法
- 2024譯林版七年級(jí)英語(yǔ)上冊(cè)單詞(帶音標(biāo))
- 品管圈PDCA案例-普外科提高甲狀腺手術(shù)患者功能鍛煉合格率
- 2024-2025學(xué)年語(yǔ)文二年級(jí)上冊(cè) 部編版期末測(cè)試卷(含答案)
- 2025年消防救援設(shè)施操作員職業(yè)技能資格知識(shí)考試題庫(kù)與答案
- 電玩城租賃經(jīng)營(yíng)合同
- 2024年中國(guó)救生圈市場(chǎng)調(diào)查研究報(bào)告
- “雄鷹杯”全國(guó)小動(dòng)物醫(yī)師技能大賽考試題庫(kù)(660題)
- 2024年國(guó)家公務(wù)員考試《申論》真題(地市級(jí))及答案解析
- 學(xué)前兒童家庭與社區(qū)教育學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 新能源汽車充電樁項(xiàng)目可行性研究報(bào)告模板及范文
評(píng)論
0/150
提交評(píng)論