安徽省干汊河中學2022年高三一診考試數(shù)學試卷含解析_第1頁
安徽省干汊河中學2022年高三一診考試數(shù)學試卷含解析_第2頁
安徽省干汊河中學2022年高三一診考試數(shù)學試卷含解析_第3頁
安徽省干汊河中學2022年高三一診考試數(shù)學試卷含解析_第4頁
安徽省干汊河中學2022年高三一診考試數(shù)學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2021-2022高考數(shù)學模擬試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°2.已知集合,則的值域為()A. B. C. D.3.函數(shù)()的圖像可以是()A. B.C. D.4.函數(shù)且的圖象是()A. B.C. D.5.函數(shù)的圖象與函數(shù)的圖象的交點橫坐標的和為()A. B. C. D.6.已知雙曲線C:()的左、右焦點分別為,過的直線l與雙曲線C的左支交于A、B兩點.若,則雙曲線C的漸近線方程為()A. B. C. D.7.若實數(shù)滿足不等式組則的最小值等于()A. B. C. D.8.已知實數(shù)滿足線性約束條件,則的取值范圍為()A.(-2,-1] B.(-1,4] C.[-2,4) D.[0,4]9.已知全集,則集合的子集個數(shù)為()A. B. C. D.10.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.11.設,且,則()A. B. C. D.12.設、分別是定義在上的奇函數(shù)和偶函數(shù),且,則()A. B.0 C.1 D.3二、填空題:本題共4小題,每小題5分,共20分。13.直線xsinα+y+2=0的傾斜角的取值范圍是________________.14.已知數(shù)列的前項和為,且成等差數(shù)列,,數(shù)列的前項和為,則滿足的最小正整數(shù)的值為______________.15.李明自主創(chuàng)業(yè),在網(wǎng)上經(jīng)營一家水果店,銷售的水果中有草莓、京白梨、西瓜、桃,價格依次為60元/盒、65元/盒、80元/盒、90元/盒.為增加銷量,李明對這四種水果進行促銷:一次購買水果的總價達到120元,顧客就少付x元.每筆訂單顧客網(wǎng)上支付成功后,李明會得到支付款的80%.①當x=10時,顧客一次購買草莓和西瓜各1盒,需要支付__________元;②在促銷活動中,為保證李明每筆訂單得到的金額均不低于促銷前總價的七折,則x的最大值為__________.16.若關于的不等式在時恒成立,則實數(shù)的取值范圍是_____三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的離心率為.且經(jīng)過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標準方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.18.(12分)選修4-5:不等式選講已知函數(shù).(1)設,求不等式的解集;(2)已知,且的最小值等于,求實數(shù)的值.19.(12分)在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù),).在以坐標原點為極點、軸的非負半軸為極軸的極坐標系中,曲線的極坐標方程為.(1)若點在直線上,求直線的極坐標方程;(2)已知,若點在直線上,點在曲線上,且的最小值為,求的值.20.(12分)在△ABC中,角A,B,C的對邊分別為a,b,c,且b(a2+c2﹣b2)=a2ccosC+ac2cosA.(1)求角B的大??;(2)若△ABC外接圓的半徑為,求△ABC面積的最大值.21.(12分)設函數(shù).(1)求的值;(2)若,求函數(shù)的單調(diào)遞減區(qū)間.22.(10分)2019年底,北京2022年冬奧組委會啟動志愿者全球招募,僅一個月內(nèi)報名人數(shù)便突破60萬,其中青年學生約有50萬人.現(xiàn)從這50萬青年學生志愿者中,按男女分層抽樣隨機選取20人進行英語水平測試,所得成績(單位:分)統(tǒng)計結(jié)果用莖葉圖記錄如下:(Ⅰ)試估計在這50萬青年學生志愿者中,英語測試成績在80分以上的女生人數(shù);(Ⅱ)從選出的8名男生中隨機抽取2人,記其中測試成績在70分以上的人數(shù)為X,求的分布列和數(shù)學期望;(Ⅲ)為便于聯(lián)絡,現(xiàn)將所有的青年學生志愿者隨機分成若干組(每組人數(shù)不少于5000),并在每組中隨機選取個人作為聯(lián)絡員,要求每組的聯(lián)絡員中至少有1人的英語測試成績在70分以上的概率大于90%.根據(jù)圖表中數(shù)據(jù),以頻率作為概率,給出的最小值.(結(jié)論不要求證明)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

如圖所示:作垂直于準線交準線于,則,故,得到答案.【詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉(zhuǎn)化能力.2.A【解析】

先求出集合,化簡=,令,得由二次函數(shù)的性質(zhì)即可得值域.【詳解】由,得,,令,,,所以得,在上遞增,在上遞減,,所以,即的值域為故選A【點睛】本題考查了二次不等式的解法、二次函數(shù)最值的求法,換元法要注意新變量的范圍,屬于中檔題3.B【解析】

根據(jù),可排除,然后采用導數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【詳解】由題可知:,所以當時,,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【點睛】本題考查函數(shù)的圖像,可從以下指標進行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎題.4.B【解析】

先判斷函數(shù)的奇偶性,再取特殊值,利用零點存在性定理判斷函數(shù)零點分布情況,即可得解.【詳解】由題可知定義域為,,是偶函數(shù),關于軸對稱,排除C,D.又,,在必有零點,排除A.故選:B.【點睛】本題考查了函數(shù)圖象的判斷,考查了函數(shù)的性質(zhì),屬于中檔題.5.B【解析】

根據(jù)兩個函數(shù)相等,求出所有交點的橫坐標,然后求和即可.【詳解】令,有,所以或.又,所以或或或,所以函數(shù)的圖象與函數(shù)的圖象交點的橫坐標的和,故選B.【點睛】本題主要考查三角函數(shù)的圖象及給值求角,側(cè)重考查數(shù)學建模和數(shù)學運算的核心素養(yǎng).6.D【解析】

設,利用余弦定理,結(jié)合雙曲線的定義進行求解即可.【詳解】設,由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點睛】本題考查了雙曲線的定義的應用,考查了余弦定理的應用,考查了雙曲線的漸近線方程,考查了數(shù)學運算能力.7.A【解析】

首先畫出可行域,利用目標函數(shù)的幾何意義求的最小值.【詳解】解:作出實數(shù),滿足不等式組表示的平面區(qū)域(如圖示:陰影部分)由得,由得,平移,易知過點時直線在上截距最小,所以.故選:A.【點睛】本題考查了簡單線性規(guī)劃問題,求目標函數(shù)的最值先畫出可行域,利用幾何意義求值,屬于中檔題.8.B【解析】

作出可行域,表示可行域內(nèi)點與定點連線斜率,觀察可行域可得最小值.【詳解】作出可行域,如圖陰影部分(含邊界),表示可行域內(nèi)點與定點連線斜率,,,過與直線平行的直線斜率為-1,∴.故選:B.【點睛】本題考查簡單的非線性規(guī)劃.解題關鍵是理解非線性目標函數(shù)的幾何意義,本題表示動點與定點連線斜率,由直線與可行域的關系可得結(jié)論.9.C【解析】

先求B.再求,求得則子集個數(shù)可求【詳解】由題=,則集合,故其子集個數(shù)為故選C【點睛】此題考查了交、并、補集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關鍵,是基礎題10.D【解析】

先計算,然后將進行平方,,可得結(jié)果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數(shù)量積的運算和模的計算,屬基礎題。11.C【解析】

將等式變形后,利用二次根式的性質(zhì)判斷出,即可求出的范圍.【詳解】即故選:C【點睛】此題考查解三角函數(shù)方程,恒等變化后根據(jù)的關系即可求解,屬于簡單題目.12.C【解析】

先根據(jù)奇偶性,求出的解析式,令,即可求出?!驹斀狻恳驗椤⒎謩e是定義在上的奇函數(shù)和偶函數(shù),,用替換,得,化簡得,即令,所以,故選C?!军c睛】本題主要考查函數(shù)性質(zhì)奇偶性的應用。二、填空題:本題共4小題,每小題5分,共20分。13.【解析】因為sinα∈[-1,1],所以-sinα∈[-1,1],所以已知直線的斜率范圍為[-1,1],由傾斜角與斜率關系得傾斜角范圍是.答案:14.1【解析】

本題先根據(jù)公式初步找到數(shù)列的通項公式,然后根據(jù)等差中項的性質(zhì)可解得的值,即可確定數(shù)列的通項公式,代入數(shù)列的表達式計算出數(shù)列的通項公式,然后運用裂項相消法計算出前項和,再代入不等式進行計算可得最小正整數(shù)的值.【詳解】由題意,當時,.當時,.則,.,,成等差數(shù)列,,即,解得..,...,.即,,即,,,,即.滿足的最小正整數(shù)的值為1.故答案為:1.【點睛】本題主要考查數(shù)列求通項公式、裂項相消法求前項和,考查了轉(zhuǎn)化思想、方程思想,考查了不等式的計算、邏輯思維能力和數(shù)學運算能力.15.130.15.【解析】

由題意可得顧客需要支付的費用,然后分類討論,將原問題轉(zhuǎn)化為不等式恒成立的問題可得的最大值.【詳解】(1),顧客一次購買草莓和西瓜各一盒,需要支付元.(2)設顧客一次購買水果的促銷前總價為元,元時,李明得到的金額為,符合要求.元時,有恒成立,即,即元.所以的最大值為.【點睛】本題主要考查不等式的概念與性質(zhì)?數(shù)學的應用意識?數(shù)學式子變形與運算求解能力,以實際生活為背景,創(chuàng)設問題情境,考查學生身邊的數(shù)學,考查學生的數(shù)學建模素養(yǎng).16.【解析】

利用對數(shù)函數(shù)的單調(diào)性,將不等式去掉對數(shù)符號,再依據(jù)分離參數(shù)法,轉(zhuǎn)化成求構(gòu)造函數(shù)最值問題,進而求得的取值范圍?!驹斀狻坑傻茫瑑蛇呁?,得到,,,設,,由函數(shù)在上遞減,所以,故實數(shù)的取值范圍是?!军c睛】本題主要考查對數(shù)函數(shù)的單調(diào)性,以及恒成立問題的常規(guī)解法——分離參數(shù)法。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2).【解析】

(1)利用離心率和橢圓經(jīng)過的點建立方程組,求解即可.(2)把面積之比轉(zhuǎn)化為縱坐標之間的關系,聯(lián)立方程結(jié)合韋達定理可求.【詳解】解:(1)設焦距為2c,由題意知:;解得,所以橢圓的方程為.(2)由(1)知:F(﹣1,0),設l:,D(,),E(,),<0<①,,,②;③;由①②得:,,代入③得:,又,故,因此,直線l的方程為.【點睛】本題主要考查橢圓方程的求解及橢圓中的面積問題,橢圓方程一般利用待定系數(shù)法,建立方程組進行求解,面積問題的合理轉(zhuǎn)化是求解的關鍵,側(cè)重考查數(shù)學運算的核心素養(yǎng).18.(1)(2)【解析】

(1)把f(x)去絕對值寫成分段函數(shù)的形式,分類討論,分別求得解集,綜合可得結(jié)論.(2)把f(x)去絕對值寫成分段函數(shù),畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時,.當時,即為,解得.當時,,解得.當時,,解得.綜上,的解集為.(2).,由的圖象知,,.【點睛】本題主要考查含絕對值不等式的解法及含絕對值的函數(shù)的最值問題,體現(xiàn)了分類討論的數(shù)學思想,屬于中檔題19.(1)(2)【解析】

(1)利用消參法以及點求解出的普通方程,根據(jù)極坐標與直角坐標的轉(zhuǎn)化求解出直線的極坐標方程;(2)將的坐標設為,利用點到直線的距離公式結(jié)合三角函數(shù)的有界性,求解出取最小值時對應的值.【詳解】(1)消去參數(shù)得普通方程為,將代入,可得,即所以的極坐標方程為(2)的直角坐標方程為直線的直角坐標方程設的直角坐標為∵在直線上,∴的最小值為到直線的距離的最小值∵,∴當,時取得最小值即,∴【點睛】本題考查直線的參數(shù)方程、普通方程、極坐標方程的互化以及根據(jù)曲線上一點到直線距離的最值求參數(shù),難度一般.(1)直角坐標和極坐標的互化公式:;(2)求解曲線上一點到直線的距離的最值,可優(yōu)先考慮將點的坐標設為參數(shù)方程的形式,然后再去求解.20.(1)B(2)【解析】

(1)由已知結(jié)合余弦定理,正弦定理及和兩角和的正弦公式進行化簡可求cosB,進而可求B;(2)由已知結(jié)合正弦定理,余弦定理及基本不等式即可求解ac的范圍,然后結(jié)合三角形的面積公式即可求解.【詳解】(1)因為b(a2+c2﹣b2)=ca2cosC+ac2cosA,∴,即2bcosB=acosC+ccosA由正弦定理可得,2sinBcosB=sinAcosC+sinCcosA=sin(A+C)=sinB,因為,所以,所以B;(2)由正弦定理可得,b=2RsinB2,由余弦定理可得,b2=a2+c2﹣2accosB,即a2+c2﹣ac=4,因為a2+c2≥2ac,所以4=a2+c2﹣ac≥ac,當且僅當a=c時取等號,即ac的最大值4,所以△ABC面積S即面積的最大值.【點睛】本題綜合考查了正弦定理,余弦定理及三角形的面積公式在求解三角形中的應用,屬于中檔題.21.(1)(2)的遞減區(qū)間為和【解析】

(1)化簡函數(shù),代入,計算即可;(2)先利用正弦函數(shù)的圖象與性質(zhì)求出函數(shù)的單調(diào)遞減區(qū)間,再結(jié)合即可求出.【詳解】(1),從而.(2)令.解得.即函數(shù)的所有減區(qū)間為,考慮到,取,可得,,故的遞減區(qū)間為和.【點睛】本題主要考查了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論