(新教材)高中數(shù)學(xué)A版選擇性必修第一冊(cè)知識(shí)點(diǎn)_第1頁
(新教材)高中數(shù)學(xué)A版選擇性必修第一冊(cè)知識(shí)點(diǎn)_第2頁
(新教材)高中數(shù)學(xué)A版選擇性必修第一冊(cè)知識(shí)點(diǎn)_第3頁
(新教材)高中數(shù)學(xué)A版選擇性必修第一冊(cè)知識(shí)點(diǎn)_第4頁
(新教材)高中數(shù)學(xué)A版選擇性必修第一冊(cè)知識(shí)點(diǎn)_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

PAGE高中數(shù)學(xué) 選擇性必修第一冊(cè)第一章 空間向量與立體幾何一、知識(shí)要點(diǎn)1、空間向量的概念:在空間,我們把具有大小和方向的量叫做向量。注:(1)向量一般用有向線段表示同向等長(zhǎng)的有向線段表示同一或相等的向量。(2)向量具有平移不變性2、空間向量的運(yùn)算定義:與平面向量運(yùn)算一樣,空間向量的加法、減法與數(shù)乘運(yùn)算如下(如圖)。;;運(yùn)算律:(1)加法交換律:(2)加法結(jié)合律:(3)數(shù)乘分配律:運(yùn)算法則:三角形法則、平行四邊形法則、平行六面體法則3、共線向量(1)如果表示空間向量的有向線段所在的直線平行或重合,那么這些向量也叫做共線向量或平行向量,平行于,記作。(2)共線向量定理:空間任意兩個(gè)向量、(≠),//存在實(shí)數(shù)λ,使=λ。(3)三點(diǎn)共線:A、B、C三點(diǎn)共線<=><=>(其中x+y=1)(4)與共線的單位向量為4、共面向量(1)定義:一般地,能平移到同一平面內(nèi)的向量叫做共面向量。說明:空間任意的兩向量都是共面的。(2)共面向量定理:如果兩個(gè)向量不共線,與向量共面的條件是存在實(shí)數(shù)x,y使。(3)四點(diǎn)共面:若A、B、C、P四點(diǎn)共面<=> <=>5、空間向量基本定理:如果三個(gè)向量不共面,那么對(duì)空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組,使。若三向量不共面,我們把叫做空間的一個(gè)基底,叫做基向量,空間任意三個(gè)不共面的向量都可以構(gòu)成空間的一個(gè)基底。推論:設(shè)是不共面的四點(diǎn),則對(duì)空間任一點(diǎn),都存在唯一的三個(gè)有序?qū)崝?shù)x,y,z,使。6、空間向量的直角坐標(biāo)系:(1)空間直角坐標(biāo)系中的坐標(biāo):在空間直角坐標(biāo)系中,對(duì)空間任一點(diǎn),存在唯一的有序?qū)崝?shù)組,使,有序?qū)崝?shù)組叫作向量在空間直角坐標(biāo)系中的坐標(biāo),記作,叫橫坐標(biāo),叫縱坐標(biāo),叫豎坐標(biāo)。注:①點(diǎn)A(x,y,z)關(guān)于x軸的的對(duì)稱點(diǎn)為(x,-y,-z),關(guān)于xoy平面的對(duì)稱點(diǎn)為(x,y,-z).即點(diǎn)關(guān)于什么軸/平面對(duì)稱,什么坐標(biāo)不變,其余的分坐標(biāo)均相反。②在y軸上的點(diǎn)設(shè)為(0,y,0),在平面yOz中的點(diǎn)設(shè)為(0,y,z)。空間中任一向量=(x,y,z)(3)空間向量的直角坐標(biāo)運(yùn)算律:①若,,則,,,,,②若,,則一個(gè)向量在直角坐標(biāo)系中的坐標(biāo)等于表示這個(gè)向量的有向線段的終點(diǎn)的坐標(biāo)減去起點(diǎn)的坐標(biāo)。③定比分點(diǎn)公式:若,,,則點(diǎn)P坐標(biāo)為。推導(dǎo):設(shè)P(x,y,z)則,顯然,當(dāng)P為AB中點(diǎn)時(shí),④,三角形重心P坐標(biāo)為⑤ΔABC的五心:內(nèi)心P:內(nèi)切圓的圓心,角平分線的交點(diǎn)。(單位向量)外心P:外接圓的圓心,中垂線的交點(diǎn)。垂心P:高的交點(diǎn):(移項(xiàng),內(nèi)積為0,則垂直)重心P:中線的交點(diǎn),三等分點(diǎn)(中位線比)中心:正三角形的所有心的合一。(4)模長(zhǎng)公式:若,,則,(5)夾角公式:。ΔABC中①<=>A為銳角②<=>A為鈍角,鈍角Δ(6)兩點(diǎn)間的距離公式:若,,則,或7、空間向量的數(shù)量積。(1)空間向量的夾角及其表示:已知兩非零向量,在空間任取一點(diǎn),作,則叫做向量與的夾角,記作;且規(guī)定,顯然有;若,則稱與互相垂直,記作:。(2)向量的模:設(shè),則有向線段的長(zhǎng)度叫做向量的長(zhǎng)度或模,記作:。(3)向量的數(shù)量積:已知向量,則叫做的數(shù)量積,記作,即(4)空間向量數(shù)量積的性質(zhì):①②③(5)空間向量數(shù)量積運(yùn)算律:①。②(交換律)。③(分配律)。④不滿足乘法結(jié)合律:二、空間向量與立體幾何1、線線平行兩線的方向向量平行 線面平行線的方向向量與面的法向量垂直 面面平行兩面的法向量平行2、線線垂直(共面與異面)兩線的方向向量垂直 線面垂直線與面的法向量平行 面面垂直兩面的法向量垂直3、線線夾角(共面與異面)兩線的方向向量的夾角或夾角的補(bǔ)角,線面夾角:求線面夾角的步驟:先求線的方向向量與面的法向量的夾角,若為銳角角即可,若為鈍角,則取其補(bǔ)角;再求其余角,即是線面的夾角.面面夾角(二面角):若兩面的法向量一進(jìn)一出,則二面角等于兩法向量的夾角;法向量同進(jìn)同出,則二面角等于法向量的夾角的補(bǔ)角.4、點(diǎn)面距離:求點(diǎn)到平面的距離:在平面上去一點(diǎn),得向量;;計(jì)算平面的法向量;.線面距離(線面平行):轉(zhuǎn)化為點(diǎn)面距離面面距離(面面平行):轉(zhuǎn)化為點(diǎn)面距離

第二章 直線和圓的方程一、直線方程1、直線的傾斜角:一條直線向上的方向與軸正方向所成的最小正角叫做這條直線的傾斜角,其中直線與軸平行或重合時(shí),其傾斜角為0,故直線傾斜角的范圍是.注:①當(dāng)或時(shí),直線垂直于軸,它的斜率不存在.②每一條直線都存在惟一的傾斜角,除與軸垂直的直線不存在斜率外,其余每一條直線都有惟一的斜率,并且當(dāng)直線的斜率一定時(shí),其傾斜角也對(duì)應(yīng)確定.2、直線方程的幾種形式:點(diǎn)斜式、截距式、兩點(diǎn)式、斜切式.特別地,當(dāng)直線經(jīng)過兩點(diǎn),即直線在軸,軸上的截距分別為時(shí),直線方程是:.注:若是一直線的方程,則這條直線的方程是,但若則不是這條線.附:直線系:對(duì)于直線的斜截式方程,當(dāng)均為確定的數(shù)值時(shí),它表示一條確定的直線,如果變化時(shí),對(duì)應(yīng)的直線也會(huì)變化.①當(dāng)為定植,變化時(shí),它們表示過定點(diǎn)(0,)的直線束.②當(dāng)為定值,變化時(shí),它們表示一組平行直線.3、(1)兩條直線平行:∥兩條直線平行的條件是:①和是兩條不重合的直線.②在和的斜率都存在的前提下得到的.因此,應(yīng)特別注意,抽掉或忽視其中任一個(gè)“前提”都會(huì)導(dǎo)致結(jié)論的錯(cuò)誤.(一般的結(jié)論是:對(duì)于兩條直線,它們?cè)谳S上的縱截距是,則∥,且或的斜率均不存在,即是平行的必要不充分條件,且)推論:如果兩條直線的傾斜角為則∥.(2)兩條直線垂直:兩條直線垂直的條件:①設(shè)兩條直線和的斜率分別為和,則有這里的前提是的斜率都存在.②,且的斜率不存在或,且的斜率不存在.(即是垂直的充要條件)4、直線的交角:(1)直線到的角(方向角);直線到的角,是指直線繞交點(diǎn)依逆時(shí)針方向旋轉(zhuǎn)到與重合時(shí)所轉(zhuǎn)動(dòng)的角,它的范圍是,當(dāng)時(shí).(2)兩條相交直線與的夾角:兩條相交直線與的夾角,是指由與相交所成的四個(gè)角中最小的正角,又稱為和所成的角,它的取值范圍是,當(dāng),則有.5、過兩直線的交點(diǎn)的直線系方程為參數(shù),不包括在內(nèi))6、點(diǎn)到直線的距離:(1)點(diǎn)到直線的距離公式:設(shè)點(diǎn),直線到的距離為,則有.注:①兩點(diǎn)P1(x1,y1)、P2(x2,y2)的距離公式:.特例:點(diǎn)P(x,y)到原點(diǎn)O的距離:②定比分點(diǎn)坐標(biāo)分式。若點(diǎn)P(x,y)分有向線段,其中P1(x1,y1),P2(x2,y2).則特例,中點(diǎn)坐標(biāo)公式;重要結(jié)論,三角形重心坐標(biāo)公式。③直線的傾斜角(0°≤<180°)、斜率:④過兩點(diǎn).當(dāng)(即直線和x軸垂直)時(shí),直線的傾斜角=,沒有斜率(2)兩條平行線間的距離公式:設(shè)兩條平行直線,它們之間的距離為,則有.注:直線系方程①與直線:Ax+By+C=0平行的直線系方程是:Ax+By+m=0.(m?R,C≠m).②與直線:Ax+By+C=0垂直的直線系方程是:Bx-Ay+m=0.(m?R)③過定點(diǎn)(x1,y1)的直線系方程是:A(x-x1)+B(y-y1)=0(A,B不全為0)④過直線l1、l2交點(diǎn)的直線系方程:(A1x+B1y+C1)+λ(A2x+B2y+C2)=0(λ?R)注:該直線系不含l2.7、關(guān)于點(diǎn)對(duì)稱和關(guān)于某直線對(duì)稱:(1)關(guān)于點(diǎn)對(duì)稱的兩條直線一定是平行直線,且這個(gè)點(diǎn)到兩直線的距離相等.(2)關(guān)于某直線對(duì)稱的兩條直線性質(zhì):若兩條直線平行,則對(duì)稱直線也平行,且兩直線到對(duì)稱直線距離相等.若兩條直線不平行,則對(duì)稱直線必過兩條直線的交點(diǎn),且對(duì)稱直線為兩直線夾角的角平分線.(3)點(diǎn)關(guān)于某一條直線對(duì)稱,用中點(diǎn)表示兩對(duì)稱點(diǎn),則中點(diǎn)在對(duì)稱直線上(方程①),過兩對(duì)稱點(diǎn)的直線方程與對(duì)稱直線方程垂直(方程②)①②可解得所求對(duì)稱點(diǎn).注:①曲線、直線關(guān)于一直線()對(duì)稱的解法:y換x,x換y.例:曲線f(x,y)=0關(guān)于直線y=x–2對(duì)稱曲線方程是f(y+2,x–2)=0.②曲線C:f(x,y)=0關(guān)于點(diǎn)(a,b)的對(duì)稱曲線方程是f(a–x,2b–y)=0.二、圓的方程1、(1)曲線與方程:在直角坐標(biāo)系中,如果某曲線上的與一個(gè)二元方程的實(shí)數(shù)建立了如下關(guān)系:①曲線上的點(diǎn)的坐標(biāo)都是這個(gè)方程的解.②以這個(gè)方程的解為坐標(biāo)的點(diǎn)都是曲線上的點(diǎn).那么這個(gè)方程叫做曲線方程;這條曲線叫做方程的曲線(圖形).(2)曲線和方程的關(guān)系,實(shí)質(zhì)上是曲線上任一點(diǎn)其坐標(biāo)與方程的一種關(guān)系,曲線上任一點(diǎn)是方程的解;反過來,滿足方程的解所對(duì)應(yīng)的點(diǎn)是曲線上的點(diǎn).注:如果曲線C的方程是f(x,y)=0,那么點(diǎn)P0(x0,y)線C上的充要條件是f(x0,y0)=02、圓的標(biāo)準(zhǔn)方程:以點(diǎn)為圓心,為半徑的圓的標(biāo)準(zhǔn)方程是.特例:圓心在坐標(biāo)原點(diǎn),半徑為的圓的方程是:.注:特殊圓的方程:①與軸相切的圓方程②與軸相切的圓方程③與軸軸都相切的圓方程3、圓的一般方程:.當(dāng)時(shí),方程表示一個(gè)圓,其中圓心,半徑.當(dāng)時(shí),方程表示一個(gè)點(diǎn).當(dāng)時(shí),方程無圖形(稱虛圓).注:①圓的參數(shù)方程:(為參數(shù)).②方程表示圓的充要條件是:且且.③圓的直徑或方程:已知(用向量可征).4、點(diǎn)和圓的位置關(guān)系:給定點(diǎn)及圓.①在圓內(nèi) ②在圓上③在圓外5、直線和圓的位置關(guān)系:設(shè)圓圓:;直線:;圓心到直線的距離.①時(shí),與相切;附:若兩圓相切,則相減為公切線方程.②時(shí),與相交;附:公共弦方程:設(shè)有兩個(gè)交點(diǎn),則其公共弦方程為③時(shí),與相離.附:若兩圓相離,則相減為圓心的連線的中與線方程.由代數(shù)特征判斷:方程組用代入法,得關(guān)于(或)的一元二次方程,其判別式為,則:與相切;與相交;與相離.注:若兩圓為同心圓則,相減,不表示直線.6、圓的切線方程:圓的斜率為的切線方程是過圓上一點(diǎn)的切線方程為:.①一般方程若點(diǎn)(x0,y0)在圓上,則(x–a)(x0–a)+(y–b)(y0–b)=R2.特別地,過圓上一點(diǎn)的切線方程為.②若點(diǎn)(x0,y0)不在圓上,圓心為(a,b)則,聯(lián)立求出切線方程.7、求切點(diǎn)弦方程:方法是構(gòu)造圖,則切點(diǎn)弦方程即轉(zhuǎn)化為公共弦方程.如圖:ABCD四類共圓.已知的方程…①又以ABCD為圓為方程為…②…③,所以BC的方程即③代②,①②相切即為所求.三、曲線和方程1、曲線與方程:在直角坐標(biāo)系中,如果曲線C和方程f(x,y)=0的實(shí)數(shù)解建立了如下的關(guān)系:①曲線C上的點(diǎn)的坐標(biāo)都是方程f(x,y)=0的解(純粹性);②方程f(x,y)=0的解為坐標(biāo)的點(diǎn)都在曲線C上(完備性)。則稱方程f(x,y)=0為曲線C的方程,曲線C叫做方程f(x,y)=0的曲線。2、求曲線方程的方法:.①直接法:建系設(shè)點(diǎn),列式表標(biāo),簡(jiǎn)化檢驗(yàn);②參數(shù)法;③定義法,④待定系數(shù)法.

第三章 圓錐曲線方程一、橢圓方程1、橢圓方程的第一定義:平面內(nèi)與兩個(gè)定點(diǎn)F1,F(xiàn)2的距離的和等于定長(zhǎng)(定長(zhǎng)通常等于2a,且2a>F1F2)的點(diǎn)的軌跡叫橢圓。(1)①橢圓的標(biāo)準(zhǔn)方程:中心在原點(diǎn),焦點(diǎn)在x軸上:.中心在原點(diǎn),焦點(diǎn)在軸上:.注:以上方程中的大小,其中;在和兩個(gè)方程中都有的條件,要分清焦點(diǎn)的位置,只要看和的分母的大小。②一般方程:.③橢圓的標(biāo)準(zhǔn)方程:的參數(shù)方程為(一象限應(yīng)是屬于).(2)橢圓的性質(zhì)①頂點(diǎn):或.②軸:對(duì)稱軸:x軸,軸;長(zhǎng)軸長(zhǎng),短軸長(zhǎng).③焦點(diǎn):或.④焦距:.⑤準(zhǔn)線:或.⑥離心率:.【∵,∴,且越接近,就越接近,從而就越小,對(duì)應(yīng)的橢圓越扁;反之,越接近于,就越接近于,從而越接近于,這時(shí)橢圓越接近于圓。當(dāng)且僅當(dāng)時(shí),,兩焦點(diǎn)重合,圖形變?yōu)閳A,方程為?!竣呓梗c(diǎn))半徑:設(shè)為橢圓上的一點(diǎn),為左、右焦點(diǎn),則設(shè)為橢圓上的一點(diǎn),為上、下焦點(diǎn),則由橢圓第二定義可知:歸結(jié)起來為“左加右減”.注意:橢圓參數(shù)方程的推導(dǎo):得方程的軌跡為橢圓.⑧通徑:垂直于x軸且過焦點(diǎn)的弦叫做通徑.坐標(biāo):和⑨焦點(diǎn)三角形的面積:若P是橢圓:上的點(diǎn).為焦點(diǎn),若,則的面積為(用余弦定理與可得)。若是雙曲線,則面積為。共離心率的橢圓系的方程:橢圓的離心率是,方程是大于0的參數(shù),的離心率也是我們稱此方程為共離心率的橢圓系方程.2、橢圓的第二定義:平面內(nèi)到定點(diǎn)F的距離和它到一條定直線L(F不在L上)的距離的比為常數(shù)e()的點(diǎn)的軌跡叫做橢圓。其中定點(diǎn)F為橢圓的焦點(diǎn),定直線L為橢圓焦點(diǎn)F相應(yīng)的準(zhǔn)線。二、雙曲線方程1、雙曲線的第一定義:平面內(nèi)到到兩個(gè)定點(diǎn)F1,F(xiàn)2的差的絕對(duì)值等于定長(zhǎng)(定長(zhǎng)通常等于2a,且2a<F1F2)的點(diǎn)的軌跡叫做雙曲線。()。(1)①雙曲線標(biāo)準(zhǔn)方程:.一般方程:.(2)①焦點(diǎn)在x軸上:頂點(diǎn):焦點(diǎn):準(zhǔn)線方程漸近線方程:或焦點(diǎn)在軸上:頂點(diǎn):.焦點(diǎn):.準(zhǔn)線方程:.漸近線方程:或,參數(shù)方程:或.②軸為對(duì)稱軸,實(shí)軸長(zhǎng)為2a,虛軸長(zhǎng)為2b,焦距2c.③離心率. ④準(zhǔn)線距(兩準(zhǔn)線的距離);通徑.⑤參數(shù)關(guān)系. ⑥焦(點(diǎn))半徑公式:對(duì)于雙曲線方程(分別為雙曲線的左、右焦點(diǎn)或分別為雙曲線的上下焦點(diǎn))“長(zhǎng)加短減”原則:(與橢圓焦半徑不同,橢圓焦半徑要帶符號(hào)計(jì)算,而雙曲線不帶符號(hào))構(gòu)成滿足(3)等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.定義:實(shí)軸和虛軸等長(zhǎng)的雙曲線叫做等軸雙曲線。定義式:;等軸雙曲線的性質(zhì):①漸近線方程為:;②漸近線互相垂直。注意到等軸雙曲線的特征,則等軸雙曲線可以設(shè)為:,當(dāng)時(shí)交點(diǎn)在軸,當(dāng)時(shí)焦點(diǎn)在軸上。(4)共軛雙曲線:以已知雙曲線的虛軸為實(shí)軸,實(shí)軸為虛軸的雙曲線,叫做已知雙曲線的共軛雙曲線.與互為共軛雙曲線,它們具有共同的漸近線:.(5)共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時(shí),它的雙曲線方程可設(shè)為.例如:若雙曲線一條漸近線為且過,求雙曲線的方程?解:令雙曲線的方程為:,代入得.2、雙曲線的第二定義:平面內(nèi)到定點(diǎn)F的距離和它到一條定直線L(F不在L上)的距離的比為常數(shù)e(e>1)的點(diǎn)的軌跡叫做雙曲線。其中定點(diǎn)F為雙曲線的焦點(diǎn),定直線L為雙曲線焦點(diǎn)F相應(yīng)的準(zhǔn)線。三、拋物線方程(1)拋物線的概念:平面內(nèi)與一定點(diǎn)F和一條定直線l的距離相等的點(diǎn)的軌跡叫做拋物線(定點(diǎn)F不在定直線l上)。定點(diǎn)F叫做拋物線的焦點(diǎn),定直線l叫做拋物線的準(zhǔn)線。方程叫做拋物線的標(biāo)準(zhǔn)方程。注意:它表示的拋物線的焦點(diǎn)在x軸的正半軸上,焦點(diǎn)坐標(biāo)是F(,0),它的準(zhǔn)線方程是;(2)拋物線的性質(zhì)設(shè),拋物線的標(biāo)準(zhǔn)方程、類型及其幾何性質(zhì):圖形焦點(diǎn)準(zhǔn)線方程范圍對(duì)稱軸軸軸頂點(diǎn)(0,0)離心率焦半徑通徑2p2p2p2p焦點(diǎn)弦x1+x2+px1+x2+py1+y2+py1+y2+p注:①通徑(過焦點(diǎn)且垂直于坐標(biāo)軸的線段)為2p,這是過焦點(diǎn)的所有弦中最短的.②(或)的參數(shù)方程為(或)(為參數(shù)).四、圓錐曲線的統(tǒng)一定義1、圓錐曲線的統(tǒng)一定義:平面內(nèi)到定點(diǎn)F和定直線的距離之比為常數(shù)的點(diǎn)的軌跡.當(dāng)時(shí),軌跡為橢圓;當(dāng)時(shí),軌跡為拋物線;當(dāng)時(shí),軌跡為雙曲線;當(dāng)時(shí),軌跡為圓(,當(dāng)時(shí)).【弦長(zhǎng)公式】2、橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程與幾何性質(zhì)橢圓雙曲線拋物線定義1、到兩定點(diǎn)F1,F2的距離之和為定值2a(2a>|F1F2|)的點(diǎn)的軌跡2、與定點(diǎn)和直線的距離之比為定值e的點(diǎn)的軌跡.(0<e<1)1、到兩定點(diǎn)F1,F2的距離之差的絕對(duì)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論