新高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)06 導(dǎo)數(shù)及其應(yīng)用原卷版_第1頁(yè)
新高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)06 導(dǎo)數(shù)及其應(yīng)用原卷版_第2頁(yè)
新高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)06 導(dǎo)數(shù)及其應(yīng)用原卷版_第3頁(yè)
新高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)06 導(dǎo)數(shù)及其應(yīng)用原卷版_第4頁(yè)
新高考一輪復(fù)習(xí)核心考點(diǎn)講與練考點(diǎn)06 導(dǎo)數(shù)及其應(yīng)用原卷版_第5頁(yè)
已閱讀5頁(yè),還剩20頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

考點(diǎn)06導(dǎo)數(shù)及其應(yīng)用(核心考點(diǎn)講與練)1.導(dǎo)數(shù)的概念平均變化率瞬時(shí)變化率某點(diǎn)的導(dǎo)數(shù)在一點(diǎn)可導(dǎo)在區(qū)間上可導(dǎo)導(dǎo)函數(shù)2.導(dǎo)數(shù)的幾何意義:曲線過點(diǎn)的切線的斜率等于.3.常見函數(shù)的導(dǎo)數(shù)公式:(為常數(shù));;;;;(,且);;(,且).4.兩個(gè)函數(shù)的和、差、積、商的求導(dǎo)法則:法則1.法則2.法則3.5.導(dǎo)數(shù)的應(yīng)用⑴利用導(dǎo)數(shù)判斷單調(diào)性;⑵利用導(dǎo)數(shù)研究函數(shù)的極值與最值.1.導(dǎo)數(shù)研究不等式恒成立問題,求最值問題,關(guān)鍵是將已知不等式分離為兩個(gè)易于處理的函數(shù)之間的不等關(guān)系,利用數(shù)形結(jié)合方法求得a,b滿足的條件,得到SKIPIF1<0后,再構(gòu)造函數(shù),利用導(dǎo)數(shù)求最大值.2.導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)極值點(diǎn)求參數(shù)范圍,考查運(yùn)算求解能力,邏輯推理能力,是難題.本題第二問解題的關(guān)鍵在于理解極值點(diǎn)的定義,結(jié)合SKIPIF1<0符號(hào)分類討論,將問題轉(zhuǎn)化為在局部區(qū)間SKIPIF1<0(SKIPIF1<0為足夠小的正數(shù))上的函數(shù)的符號(hào),在討論過程中注重引用“隱零點(diǎn)”的問題,實(shí)現(xiàn)極值的求解.3.研究函數(shù)的單調(diào)性及構(gòu)造函數(shù)證明不等式,解含參數(shù)的不等式,通常需要從幾個(gè)方面分類討論:(1)看函數(shù)最高次項(xiàng)系數(shù)是否為0,需分類討論;(2)若最高次項(xiàng)系數(shù)不為0,通常是二次函數(shù),若二次函數(shù)開口定時(shí),需根據(jù)判別式討論無根或兩根相等的情況;(3)再根據(jù)判別式討論兩根不等時(shí),注意兩根大小比較,或與定義域的比較.4.利用導(dǎo)數(shù)研究函數(shù)的極值點(diǎn)以及利用導(dǎo)數(shù)解決不等式恒成立時(shí)的參數(shù)的范圍問題,有較強(qiáng)的綜合性,要求明確導(dǎo)數(shù)與函數(shù)的單調(diào)性以及極值之間的關(guān)系并能靈活應(yīng)用,解答的關(guān)鍵是構(gòu)造函數(shù),將不等式恒成立問題轉(zhuǎn)化為函數(shù)的最值問題,其中要注意分類討論.5.導(dǎo)數(shù)是研究函數(shù)的單調(diào)性、極值(最值)最有效的工具,而函數(shù)是高中數(shù)學(xué)中重要的知識(shí)點(diǎn),對(duì)導(dǎo)數(shù)的應(yīng)用的考查主要從以下幾個(gè)角度進(jìn)行:(1)考查導(dǎo)數(shù)的幾何意義,往往與解析幾何、微積分相聯(lián)系.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,判斷單調(diào)性;已知單調(diào)性,求參數(shù).(3)利用導(dǎo)數(shù)求函數(shù)的最值(極值),解決生活中的優(yōu)化問題.(4)考查數(shù)形結(jié)合思想的應(yīng)用.6.利用導(dǎo)數(shù)證明不等式問題,方法如下:(1)直接構(gòu)造函數(shù)法:證明不等式SKIPIF1<0(或SKIPIF1<0)轉(zhuǎn)化為證明SKIPIF1<0(或SKIPIF1<0),進(jìn)而構(gòu)造輔助函數(shù)SKIPIF1<0;(2)適當(dāng)放縮構(gòu)造法:一是根據(jù)已知條件適當(dāng)放縮;二是利用常見放縮結(jié)論;(3)構(gòu)造“形似”函數(shù),稍作變形再構(gòu)造,對(duì)原不等式同解變形,根據(jù)相似結(jié)構(gòu)構(gòu)造輔助函數(shù).導(dǎo)數(shù)的概念和幾何意義一、單選題1.(2021·陜西·寶雞市陳倉(cāng)區(qū)教育體育局教學(xué)研究室一模(文))設(shè)函數(shù)SKIPIF1<0在點(diǎn)SKIPIF1<0處附近有定義,且SKIPIF1<0為常數(shù),則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·貴州黔東南·一模(理))一個(gè)質(zhì)點(diǎn)作直線運(yùn)動(dòng),其位移s(單位:米)與時(shí)間t(單位:秒)滿足關(guān)系式SKIPIF1<0,則當(dāng)SKIPIF1<0時(shí),該質(zhì)點(diǎn)的瞬時(shí)速度為(

)A.5米/秒 B.8米/秒C.14米/秒 D.16米/秒3.(2022·陜西·略陽(yáng)縣天津高級(jí)中學(xué)二模(理))若點(diǎn)P是曲線SKIPIF1<0上任意一點(diǎn),則點(diǎn)P到直線SKIPIF1<0的距離的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2022·廣東深圳·二模)已知SKIPIF1<0,若過點(diǎn)SKIPIF1<0可以作曲線SKIPIF1<0的三條切線,則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·廣東汕頭·二模)已知函數(shù)SKIPIF1<0,若過點(diǎn)SKIPIF1<0存在3條直線與曲線SKIPIF1<0相切,則t的取值范圍是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·安徽合肥·二模(理))過平面內(nèi)一點(diǎn)SKIPIF1<0作曲線SKIPIF1<0兩條互相垂直的切線SKIPIF1<0、SKIPIF1<0,切點(diǎn)為SKIPIF1<0、SKIPIF1<0(SKIPIF1<0、SKIPIF1<0不重合),設(shè)直線SKIPIF1<0、SKIPIF1<0分別與SKIPIF1<0軸交于點(diǎn)SKIPIF1<0、SKIPIF1<0,則下列結(jié)論正確的個(gè)數(shù)是(

)①SKIPIF1<0、SKIPIF1<0兩點(diǎn)的橫坐標(biāo)之積為定值;

②直線SKIPIF1<0的斜率為定值;③線段SKIPIF1<0的長(zhǎng)度為定值;

④三角形SKIPIF1<0面積的取值范圍為SKIPIF1<0.A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<07.(2021·廣西桂林·模擬預(yù)測(cè)(理))設(shè)是函數(shù)SKIPIF1<0的導(dǎo)函數(shù),若,且對(duì)SKIPIF1<0,且SKIPIF1<0總有SKIPIF1<0,則下列選項(xiàng)正確的是(

).A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0二、多選題8.(2020·山東青島·模擬預(yù)測(cè))已知曲線SKIPIF1<0上存在兩條斜率為3的不同切線,且切點(diǎn)的橫坐標(biāo)都大于零,則實(shí)數(shù)SKIPIF1<0可能的取值(

)A.SKIPIF1<0 B.3 C.SKIPIF1<0 D.SKIPIF1<09.(2021·全國(guó)·模擬預(yù)測(cè))已知SKIPIF1<0,SKIPIF1<0(SKIPIF1<0且SKIPIF1<0),則(

)A.當(dāng)SKIPIF1<0時(shí),函數(shù)SKIPIF1<0的最小值為2B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的圖象與SKIPIF1<0的圖象相切C.若SKIPIF1<0,則方程SKIPIF1<0恰有兩個(gè)不同的實(shí)數(shù)根D.若方程SKIPIF1<0恰有三個(gè)不同的實(shí)數(shù)根,則SKIPIF1<0的取值范圍是SKIPIF1<0三、填空題10.(2022·湖南永州·三模)已知直線SKIPIF1<0:SKIPIF1<0,函數(shù)SKIPIF1<0,若SKIPIF1<0存在切線與SKIPIF1<0關(guān)于直線SKIPIF1<0對(duì)稱,則SKIPIF1<0__________.11.(2021·福建廈門·三模)已知函數(shù)SKIPIF1<0,若SKIPIF1<0,則實(shí)數(shù)SKIPIF1<0的取值范圍是__________.四、解答題12.(2022·江蘇·沭陽(yáng)如東中學(xué)模擬預(yù)測(cè))已知函數(shù)f(x)=(x-m)(x-n)2,m∈R.(1)若函數(shù)f(x)在點(diǎn)A(m,f(m))處的切線與在點(diǎn)B(m+1,f(m+1))處的切線平行,求此切線的斜率;(2)若函數(shù)f(x)滿足:①m<n;②f(x)-λxf′(x)≥0對(duì)于一切x∈R恒成立試寫出符合上述條件的函數(shù)f(x)的一個(gè)解析式,并說明你的理由.13.(2022·安徽省含山中學(xué)三模(理))已知函數(shù)SKIPIF1<0(1)若函數(shù)SKIPIF1<0的圖象在區(qū)間[0,1]上存在斜率為零的切線,求實(shí)數(shù)a的取值范圍;(2)當(dāng)SKIPIF1<0時(shí),判斷函數(shù)SKIPIF1<0零點(diǎn)的個(gè)數(shù),并說明理由.14.(2022·江西萍鄉(xiāng)·二模(文))已知拋物線SKIPIF1<0,焦點(diǎn)為SKIPIF1<0,過SKIPIF1<0作動(dòng)直線SKIPIF1<0交拋物線SKIPIF1<0于SKIPIF1<0兩點(diǎn)SKIPIF1<0,過SKIPIF1<0作拋物線SKIPIF1<0的切線SKIPIF1<0,過SKIPIF1<0作直線SKIPIF1<0的平行直線SKIPIF1<0交SKIPIF1<0軸于SKIPIF1<0,設(shè)線段SKIPIF1<0的垂直平分線為SKIPIF1<0,直線SKIPIF1<0的傾斜角為SKIPIF1<0.已知當(dāng)SKIPIF1<0時(shí),SKIPIF1<0.(1)求拋物線SKIPIF1<0的方程;(2)證明:直線SKIPIF1<0過SKIPIF1<0軸上一定點(diǎn),并求該定點(diǎn)的坐標(biāo).15.(2022·北京·一模)已知函數(shù)SKIPIF1<0.(1)求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線的方程;(2)若函數(shù)SKIPIF1<0在SKIPIF1<0處取得極大值,求SKIPIF1<0的取值范圍;(3)若函數(shù)SKIPIF1<0存在最小值,直接寫出SKIPIF1<0的取值范圍.導(dǎo)數(shù)的計(jì)算一、單選題1.(2022·浙江臺(tái)州·二模)已知SKIPIF1<0.若SKIPIF1<0在SKIPIF1<0處取到最小值,則下列恒成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·江西萍鄉(xiāng)·二模(文))若函數(shù)SKIPIF1<0的圖象在SKIPIF1<0處的切線斜率為SKIPIF1<0,則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·內(nèi)蒙古呼和浩特·一模(理))已知SKIPIF1<0,則SKIPIF1<0的最小值為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<04.(2021·海南·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0(SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù)),則SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題5.(2022·廣東廣州·二模)已知SKIPIF1<0,直線SKIPIF1<0與曲線SKIPIF1<0相切,則下列不等式成立的是(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<06.(2022·江蘇南通·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0的圖象在SKIPIF1<0軸上的截距為SKIPIF1<0,在SKIPIF1<0軸右側(cè)的第一個(gè)最高點(diǎn)的橫坐標(biāo)為SKIPIF1<0,則下列說法正確的是(

)A.SKIPIF1<0B.SKIPIF1<0C.函數(shù)在SKIPIF1<0上一定單調(diào)遞增D.在SKIPIF1<0軸右側(cè)的第一個(gè)最低點(diǎn)的橫坐標(biāo)為SKIPIF1<0三、填空題7.(2022·黑龍江·哈九中三模(理))寫出一個(gè)同時(shí)滿足下列性質(zhì)①②③的函數(shù):______;①對(duì)定義域內(nèi)任意的SKIPIF1<0,SKIPIF1<0,都有SKIPIF1<0;②對(duì)任意的SKIPIF1<0,都有SKIPIF1<0;③f(x)的導(dǎo)函數(shù)SKIPIF1<0為奇函數(shù).8.(2022·陜西·寶雞市渭濱區(qū)教研室一模(理))函數(shù)SKIPIF1<0的圖象在SKIPIF1<0處的切線與y軸的交點(diǎn)坐標(biāo)為_____.9.(2022·江西·模擬預(yù)測(cè)(文))已知曲線SKIPIF1<0與過點(diǎn)SKIPIF1<0的直線SKIPIF1<0相切,則SKIPIF1<0的斜率為_______.10.(2022·福建莆田·模擬預(yù)測(cè))曲線SKIPIF1<0在SKIPIF1<0處的切線方程為______.四、解答題11.(2022·遼寧·沈陽(yáng)二中二模)用數(shù)學(xué)的眼光看世界就能發(fā)現(xiàn)很多數(shù)學(xué)之“美”.現(xiàn)代建筑講究線條感,曲線之美讓人稱奇.衡量曲線彎曲程度的重要指標(biāo)是曲率,曲線的曲率定義如下:若SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù),SKIPIF1<0是SKIPIF1<0的導(dǎo)函數(shù),則曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的曲率SKIPIF1<0.(1)若曲線SKIPIF1<0與SKIPIF1<0在SKIPIF1<0處的曲率分別為SKIPIF1<0,SKIPIF1<0,比較SKIPIF1<0,SKIPIF1<0大?。?2)求正弦曲線SKIPIF1<0(SKIPIF1<0)曲率的平方SKIPIF1<0的最大值.12.(2022·貴州黔東南·一模(文))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)當(dāng)x>1時(shí),SKIPIF1<0恒成立,求a的取值范圍.13.(2022·浙江嘉興·二模)已知函數(shù)SKIPIF1<0(SKIPIF1<0是自然對(duì)數(shù)的底數(shù)).(1)若SKIPIF1<0,求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)若函數(shù)SKIPIF1<0有3個(gè)極值點(diǎn)SKIPIF1<0,SKIPIF1<0,(i)求實(shí)數(shù)m的取值范圍;(ii)證明:SKIPIF1<0.14.(2022·安徽黃山·二模(文))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的極值;(2)當(dāng)SKIPIF1<0時(shí),求證:SKIPIF1<0.導(dǎo)數(shù)在研究函數(shù)中的作用一、單選題1.(2022·山西呂梁·模擬預(yù)測(cè)(文))已知SKIPIF1<0,則a,b,c的大小關(guān)系為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<02.(2022·江蘇南通·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0在SKIPIF1<0處取極小值,且SKIPIF1<0的極大值為4,則SKIPIF1<0(

)A.-1 B.2 C.-3 D.43.(2022·云南·二模(文))已知e是自然對(duì)數(shù)的底數(shù).若SKIPIF1<0,使SKIPIF1<0,則實(shí)數(shù)m的取值范圍為(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題4.(2022·湖南永州·三模)已知函數(shù)SKIPIF1<0,則(

)A.SKIPIF1<0的圖象關(guān)于直線SKIPIF1<0對(duì)稱B.SKIPIF1<0在SKIPIF1<0上為減函數(shù)C.SKIPIF1<0有4個(gè)零點(diǎn)D.SKIPIF1<0,使SKIPIF1<0三、填空題5.(2021·四川·石室中學(xué)模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0的定義域?yàn)镾KIPIF1<0,其部分自變量與函數(shù)值的對(duì)應(yīng)情況如表:xSKIPIF1<00245SKIPIF1<0312.513SKIPIF1<0的導(dǎo)函數(shù)SKIPIF1<0的圖象如圖所示.給出下列四個(gè)結(jié)論:①SKIPIF1<0在區(qū)間SKIPIF1<0上單調(diào)遞增;②SKIPIF1<0有2個(gè)極大值點(diǎn);③SKIPIF1<0的值域?yàn)镾KIPIF1<0;④如果SKIPIF1<0時(shí),SKIPIF1<0的最小值是1,那么t的最大值為4.其中,所有正確結(jié)論的序號(hào)是______.6.(2022·北京·一模)已知函數(shù)SKIPIF1<0,給出下列四個(gè)結(jié)論:①SKIPIF1<0是偶函數(shù);②SKIPIF1<0有無數(shù)個(gè)零點(diǎn);③SKIPIF1<0的最小值為SKIPIF1<0;④SKIPIF1<0的最大值為1.其中,所有正確結(jié)論的序號(hào)為___________.四、解答題7.(2022·陜西陜西·二模(理))已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在定義域內(nèi)單調(diào)遞增,求a的取值范圍;(2)設(shè)SKIPIF1<0,m,n分別是SKIPIF1<0的極大值和極小值,且SKIPIF1<0,求S的取值范圍.8.(2022·遼寧錦州·一模)已知函數(shù)SKIPIF1<0.(1)若SKIPIF1<0在SKIPIF1<0上是增函數(shù),求a的取值范圍;(2)若SKIPIF1<0是函數(shù)SKIPIF1<0的兩個(gè)不同的零點(diǎn),求證:SKIPIF1<0.9.(2022·山西呂梁·模擬預(yù)測(cè)(文))已知函數(shù)SKIPIF1<0(1)若SKIPIF1<0,求曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程;(2)討論SKIPIF1<0的單調(diào)性.10.(2022·全國(guó)·模擬預(yù)測(cè))設(shè)函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0在SKIPIF1<0上無極值;(2)設(shè)SKIPIF1<0,SKIPIF1<0,證明:SKIPIF1<0在SKIPIF1<0上只有一個(gè)極大值點(diǎn).11.(2022·吉林·延邊州教育學(xué)院一模(文))已知函數(shù)SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的極值點(diǎn)個(gè)數(shù);(2)若SKIPIF1<0對(duì)任意的SKIPIF1<0恒成立,求實(shí)數(shù)a的取值范圍.12.(2022·江西萍鄉(xiāng)·二模(文))已知SKIPIF1<0.(1)若SKIPIF1<0,求SKIPIF1<0的極值;(2)若不等式SKIPIF1<0恒成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.13.(2022·四川瀘州·三模(文))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)討論函數(shù)SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0有且只有一個(gè)極值點(diǎn),求a的取值范圍.14.(2022·重慶·二模)已知函數(shù)SKIPIF1<0.(1)判斷函數(shù)SKIPIF1<0是否存在極值,并說明理由;(2)設(shè)函數(shù)SKIPIF1<0,若存在兩個(gè)不相等的正數(shù)SKIPIF1<0,SKIPIF1<0,使得SKIPIF1<0,證明:SKIPIF1<0.15.(2022·河南·三模(文))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0極值點(diǎn)的個(gè)數(shù);(2)證明:SKIPIF1<0.16.(2022·新疆阿勒泰·三模(理))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)SKIPIF1<0,討論函數(shù)SKIPIF1<0的極值點(diǎn);(2)SKIPIF1<0,設(shè)SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),不等式SKIPIF1<0恒成立,求a的取值范圍.17.(2022·江蘇·海安高級(jí)中學(xué)二模)我國(guó)某芯片企業(yè)使用新技術(shù)對(duì)一款芯片進(jìn)行試產(chǎn),設(shè)試產(chǎn)該款芯片的次品率為p(0<p<1),且各個(gè)芯片的生產(chǎn)互不影響.(1)試產(chǎn)該款芯片共有兩道工序,且互不影響,其次品率依次為,SKIPIF1<0.①求p;②現(xiàn)對(duì)該款試產(chǎn)的芯片進(jìn)行自動(dòng)智能檢測(cè),自動(dòng)智能檢測(cè)為次品(注:合格品不會(huì)被誤檢成次品)的芯片會(huì)被自動(dòng)淘汰,然后再進(jìn)行人工抽檢已知自動(dòng)智能檢測(cè)顯示該款芯片的合格率為96%,求人工抽檢時(shí),抽檢的一個(gè)芯片是合格品的概率.(2)視p為概率,記從試產(chǎn)的芯片中隨機(jī)抽取n個(gè)恰含m(n>m)個(gè)次品的概率為SKIPIF1<0,求證:SKIPIF1<0在SKIPIF1<0時(shí)取得最大值.18.(2022·黑龍江齊齊哈爾·二模(理))設(shè)平面向量SKIPIF1<0,SKIPIF1<0滿足SKIPIF1<0,設(shè)函數(shù)SKIPIF1<0.(1)若函數(shù)SKIPIF1<0的最大值為1,求實(shí)數(shù)a的值;(2)在(1)的條件下,若SKIPIF1<0使得SKIPIF1<0,求證:SKIPIF1<0.導(dǎo)數(shù)的綜合應(yīng)用一、單選題1.(2022·安徽省含山中學(xué)三模(理))若存在直線與函數(shù)SKIPIF1<0,SKIPIF1<0的圖像都相切,則實(shí)數(shù)a的取值范圍是(

)A.[-e,+∞) B.[-2,+∞)C.[-1,+∞) D.[-SKIPIF1<0,+∞)2.(2022·河北·模擬預(yù)測(cè))已知SKIPIF1<0,且SKIPIF1<0,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<03.(2022·河北保定·一模)已知某商品的進(jìn)價(jià)為4元,通過多日的市場(chǎng)調(diào)查,該商品的市場(chǎng)銷量SKIPIF1<0(件)與商品售價(jià)SKIPIF1<0(元)的關(guān)系為SKIPIF1<0,則當(dāng)此商品的利潤(rùn)最大時(shí),該商品的售價(jià)SKIPIF1<0(元)為(

)A.5 B.6 C.7 D.84.(2022·重慶·二模)某單位科技活動(dòng)紀(jì)念章的結(jié)構(gòu)如圖所示,SKIPIF1<0是半徑分別為SKIPIF1<0的兩個(gè)同心圓的圓心,等腰三角形SKIPIF1<0的頂點(diǎn)SKIPIF1<0在外圓上,底邊SKIPIF1<0的兩個(gè)端點(diǎn)都在內(nèi)圓上,點(diǎn)SKIPIF1<0在直線SKIPIF1<0的同側(cè).若線段SKIPIF1<0與劣弧SKIPIF1<0所圍成的弓形面積為SKIPIF1<0,△SKIPIF1<0與△SKIPIF1<0的面積之和為SKIPIF1<0,設(shè)SKIPIF1<0.經(jīng)研究發(fā)現(xiàn)當(dāng)SKIPIF1<0的值最大時(shí),紀(jì)念章最美觀,當(dāng)紀(jì)念章最美觀時(shí),SKIPIF1<0(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、多選題5.(2022·廣東湛江·二模)若過點(diǎn)SKIPIF1<0最多可作出SKIPIF1<0條直線與函數(shù)SKIPIF1<0的圖象相切,則(

)A.SKIPIF1<0B.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的值不唯一C.SKIPIF1<0可能等于SKIPIF1<0D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0的取值范圍是SKIPIF1<06.(2020·遼寧·開原市第二高級(jí)中學(xué)三模)國(guó)家統(tǒng)計(jì)局公布的全國(guó)夏糧生產(chǎn)數(shù)據(jù)顯示,2020年國(guó)夏糧總產(chǎn)量達(dá)14281萬噸,創(chuàng)歷史新高.糧食儲(chǔ)藏工作關(guān)系著軍需民食,也關(guān)系著國(guó)家安全和社會(huì)穩(wěn)定.某糧食加工企業(yè)設(shè)計(jì)了一種容積為SKIPIF1<0立方米的糧食儲(chǔ)藏容器,如圖1所示,已知該容器分上下兩部分,中上部分是底面半徑和高都為SKIPIF1<0米的圓錐,下部分是底面半徑為SKIPIF1<0米?高為SKIPIF1<0米的圓柱體,如圖2所示.經(jīng)測(cè)算,圓錐的側(cè)面每平方米的建造費(fèi)用為SKIPIF1<0元,圓柱的側(cè)面?底面每平方米的建造費(fèi)用為SKIPIF1<0元,設(shè)每個(gè)容器的制造總費(fèi)用為SKIPIF1<0元,則下面說法正確的是(

)A.SKIPIF1<0 B.SKIPIF1<0的最大值為SKIPIF1<0C.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0 D.當(dāng)SKIPIF1<0時(shí),SKIPIF1<0有最小值,最小值為SKIPIF1<0三、填空題7.(2021·陜西·渭南市臨渭區(qū)教學(xué)研究室二模(文))做一個(gè)無蓋的圓柱形水桶,若要使水桶的容積是SKIPIF1<0,且用料最省,則水桶的底面半徑為______.四、解答題8.(2022·江蘇·南京市第一中學(xué)三模)已知函數(shù)SKIPIF1<0.(1)證明:SKIPIF1<0;(2)若SKIPIF1<0,證明:SKIPIF1<0.9.(2022·內(nèi)蒙古赤峰·模擬預(yù)測(cè)(理))已知函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),判斷SKIPIF1<0的零點(diǎn)個(gè)數(shù);(2)設(shè)SKIPIF1<0,若存在SKIPIF1<0,使SKIPIF1<0成立,求實(shí)數(shù)SKIPIF1<0的取值范圍.10.(2022·河北·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)求函數(shù)SKIPIF1<0在SKIPIF1<0上的極值;(2)當(dāng)SKIPIF1<0時(shí),若直線l既是曲線SKIPIF1<0又是曲線SKIPIF1<0的切線,試判斷l(xiāng)的條數(shù).11.(2022·天津三中一模)已知函數(shù)SKIPIF1<0,SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0在SKIPIF1<0處的切線方程;(2)若SKIPIF1<0有兩個(gè)極值點(diǎn)SKIPIF1<0、SKIPIF1<0,且SKIPIF1<0.①求實(shí)數(shù)SKIPIF1<0的取值范圍;②求證:SKIPIF1<0.12.(2022·江蘇·新沂市第一中學(xué)模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0.(1)求SKIPIF1<0的單調(diào)區(qū)間;(2)當(dāng)SKIPIF1<0時(shí),證明:SKIPIF1<0.一、單選題1.(2021·全國(guó)·高考真題)若過點(diǎn)SKIPIF1<0可以作曲線SKIPIF1<0的兩條切線,則(

)A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<02.(2021·全國(guó)·高考真題(理))設(shè)SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.則(

)A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<0二、填空題3.(2021·全國(guó)·高考真題(理))曲線SKIPIF1<0在點(diǎn)SKIPIF1<0處的切線方程為__________.4.(2021·全國(guó)·高考真題)寫出一個(gè)同時(shí)具有下列性質(zhì)①②③的函數(shù)SKIPIF1<0_______.①SKIPIF1<0;②當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;③SKIPIF1<0是奇函數(shù).5.(2021·全國(guó)·高考真題)函數(shù)SKIPIF1<0的最小值為______.三、解答題6.(2021·全國(guó)·高考真題(理))已知拋物線SKIPIF1<0的焦點(diǎn)為SKIPIF1<0,且SKIPIF1<0與圓SKIPIF1<0上點(diǎn)的距離的最小值為SKIPIF1<0.(1)求SKIPIF1<0;(2)若點(diǎn)SKIPIF1<0在SKIPIF1<0上,SKIPIF1<0是SKIPIF1<0的兩條切線,SKIPIF1<0是切點(diǎn),求SKIPIF1<0面積的最大值.7.(2021·全國(guó)·高考真題(文))已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)求曲線SKIPIF1<0過坐標(biāo)原點(diǎn)的切線與曲線SKIPIF1<0的公共點(diǎn)的坐標(biāo).8.(2021·全國(guó)·高考真題)已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)從下面兩個(gè)條件中選一個(gè),證明:SKIPIF1<0只有一個(gè)零點(diǎn)①SKIPIF1<0;②SKIPIF1<0.9.(2021·全國(guó)·高考真題(理))設(shè)函數(shù)SKIPIF1<0,已知SKIPIF1<0是函數(shù)SKIPIF1<0的極值點(diǎn).(1)求a;(2)設(shè)函數(shù)SKIPIF1<0.證明:SKIPIF1<0.10.(2021·全國(guó)·高考真題(文))設(shè)函數(shù)SKIPIF1<0,其中SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)若SKIPIF1<0的圖象與SKIPIF1<0軸沒有公共點(diǎn),求a的取值范圍.11.(2021·全國(guó)·高考真題(理))已知SKIPIF1<0且SKIPIF1<0,函數(shù)SKIPIF1<0.(1)當(dāng)SKIPIF1<0時(shí),求SKIPIF1<0的單調(diào)區(qū)間;(2)若曲線SKIPIF1<0與直線SKIPIF1<0有且僅有兩個(gè)交點(diǎn),求a的取值范圍.12.(2021·全國(guó)·高考真題)一種微生物群體可以經(jīng)過自身繁殖不斷生存下來,設(shè)一個(gè)這種微生物為第0代,經(jīng)過一次繁殖后為第1代,再經(jīng)過一次繁殖后為第2代……,該微生物每代繁殖的個(gè)數(shù)是相互獨(dú)立的且有相同的分布列,設(shè)X表示1個(gè)微生物個(gè)體繁殖下一代的個(gè)數(shù),SKIPIF1<0.(1)已知SKIPIF1<0,求SKIPIF1<0;(2)設(shè)p表示該種微生物經(jīng)過多代繁殖后臨近滅絕的概率,p是關(guān)于x的方程:SKIPIF1<0的一個(gè)最小正實(shí)根,求證:當(dāng)SKIPIF1<0時(shí),SKIPIF1<0,當(dāng)SKIPIF1<0時(shí),SKIPIF1<0;(3)根據(jù)你的理解說明(2)問結(jié)論的實(shí)際含義.13.(2021·全國(guó)·高考真題)已知函數(shù)SKIPIF1<0.(1)討論SKIPIF1<0的單調(diào)性;(2)設(shè)SKIPIF1<0,SKIPIF1<0為兩個(gè)不相等的正數(shù),且SKIPIF1<0,證明:SKIPIF1<0.一、單選題1.(2022·全國(guó)·模擬預(yù)測(cè))已知曲線SKIPIF1<0在SKIPIF1<0處的切線為l,點(diǎn)SKIPIF1<0到切線l的距離為d,則d的最大值為()A.1 B.2 C.SKIPIF1<0 D.SKIPIF1<02.(2022·福建漳州·一模)將曲線SKIPIF1<0上所有點(diǎn)的橫坐標(biāo)不變,縱坐標(biāo)縮小為原來的SKIPIF1<0,得到曲線SKIPIF1<0,則SKIPIF1<0上到直線SKIPIF1<0距離最短的點(diǎn)坐標(biāo)為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<03.(2022·全國(guó)·模擬預(yù)測(cè))已知函數(shù)SKIPIF1<0,則過點(diǎn)SKIPIF1<0可作曲線SKIPIF1<0的切線的條數(shù)為()A.0 B.1 C.2 D.34.(2022·浙江·模擬預(yù)測(cè))某地響應(yīng)全民冰雪運(yùn)動(dòng)的號(hào)召,建立了一個(gè)滑雪場(chǎng).該滑雪場(chǎng)中某滑道的示意圖如下所示,SKIPIF1<0點(diǎn)、SKIPIF1<0點(diǎn)分別為滑道的起點(diǎn)和終點(diǎn),它們?cè)谪Q直方向的高度差為SKIPIF1<0.兩點(diǎn)之間為滑雪彎道,相應(yīng)的曲線可近似看作某三次函數(shù)圖像的一部分.綜合考安全性與趣味性,在滑道的最陡處,滑雪者的身體與地面約成SKIPIF1<0的夾角.若還要兼顧滑道的美觀性與滑雪者的滑雪體驗(yàn),則SKIPIF1<0、SKIPIF1<0兩點(diǎn)在水平方向的距離約為()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<05.(2022·全國(guó)·模擬預(yù)測(cè))若過點(diǎn)SKIPIF1<0可以作曲線SKIPIF1<0且SKIPIF1<0的兩條切線,則()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<0與SKIPIF1<0的大小關(guān)系與SKIPIF1<0有關(guān)6.(2022·浙江·模擬預(yù)測(cè))設(shè)SKIPIF1<0是離散型隨機(jī)變量的期望,則下列不等式中不可能成立的是()A.SKIPIF1<0 B.SKIPIF1<0C.SKIPIF1<0 D.SKIPIF1<07.(2022·廣東·模擬預(yù)測(cè))如圖是網(wǎng)絡(luò)上流行的表情包,其利用了“可倒”和“可導(dǎo)”的諧音生動(dòng)形象地說明了高等數(shù)學(xué)中“連續(xù)”和“可導(dǎo)”兩個(gè)概念之間的關(guān)系.根據(jù)該表情包的說法,SKIPIF1<0在SKIPIF1<0處連續(xù)是SKIPIF1<0在SKIPIF1<0處可導(dǎo)的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件8.(2022·重慶·模擬預(yù)測(cè))已知SKIPIF1<0,直線SKIPIF1<0與曲線SKIPIF1<0相切,則SKIPIF1<0()A.SKIPIF1<0 B.SKIPIF1<0 C.SKIPIF1<0 D.SKIPIF1<09.(2022·湖南永州·二模)若函數(shù)SKIPIF1<0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論