上海師范大學(xué)附屬外國(guó)語中學(xué)2022年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第1頁
上海師范大學(xué)附屬外國(guó)語中學(xué)2022年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第2頁
上海師范大學(xué)附屬外國(guó)語中學(xué)2022年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第3頁
上海師范大學(xué)附屬外國(guó)語中學(xué)2022年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第4頁
上海師范大學(xué)附屬外國(guó)語中學(xué)2022年高三下學(xué)期第五次調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2021-2022高考數(shù)學(xué)模擬試卷注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.在條件下,目標(biāo)函數(shù)的最大值為40,則的最小值是()A. B. C. D.22.設(shè),,,則的大小關(guān)系是()A. B. C. D.3.已知函數(shù)(,)的一個(gè)零點(diǎn)是,函數(shù)圖象的一條對(duì)稱軸是直線,則當(dāng)取得最小值時(shí),函數(shù)的單調(diào)遞增區(qū)間是()A.() B.()C.() D.()4.的展開式中的常數(shù)項(xiàng)為()A.-60 B.240 C.-80 D.1805.已知函數(shù),當(dāng)時(shí),的取值范圍為,則實(shí)數(shù)m的取值范圍是()A. B. C. D.6.若實(shí)數(shù)滿足不等式組,則的最大值為()A. B. C.3 D.27.中國(guó)古代數(shù)學(xué)著作《算法統(tǒng)宗》中有這樣一個(gè)問題;“三百七十八里關(guān),初行健步不為難,次后腳痛遞減半,六朝才得到其關(guān),要見每朝行里數(shù),請(qǐng)公仔細(xì)算相還.”其意思為:“有一個(gè)人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達(dá)目的地,求該人每天走的路程.”由這個(gè)描述請(qǐng)算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里8.若不等式對(duì)于一切恒成立,則的最小值是()A.0 B. C. D.9.已知雙曲線的左、右焦點(diǎn)分別為,圓與雙曲線在第一象限內(nèi)的交點(diǎn)為M,若.則該雙曲線的離心率為A.2 B.3 C. D.10.設(shè)實(shí)數(shù)、滿足約束條件,則的最小值為()A.2 B.24 C.16 D.1411.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件12.設(shè)復(fù)數(shù)滿足,則在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空題:本題共4小題,每小題5分,共20分。13.某次足球比賽中,,,,四支球隊(duì)進(jìn)入了半決賽.半決賽中,對(duì)陣,對(duì)陣,獲勝的兩隊(duì)進(jìn)入決賽爭(zhēng)奪冠軍,失利的兩隊(duì)爭(zhēng)奪季軍.已知他們之間相互獲勝的概率如下表所示.獲勝概率—0.40.30.8獲勝概率0.6—0.70.5獲勝概率0.70.3—0.3獲勝概率0.20.50.7—?jiǎng)t隊(duì)獲得冠軍的概率為______.14.我國(guó)古代數(shù)學(xué)著作《九章算術(shù)》中記載“今有人共買物,人出八,盈三;人出七,不足四.問人數(shù)、物價(jià)各幾何?”設(shè)人數(shù)、物價(jià)分別為、,滿足,則_____,_____.15.已知函數(shù),若,則的取值范圍是__16.從2、3、5、7、11、13這六個(gè)質(zhì)數(shù)中任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是________(結(jié)果用最簡(jiǎn)分?jǐn)?shù)表示)三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知的內(nèi)角的對(duì)邊分別為,且滿足.(1)求角的大?。唬?)若的面積為,求的周長(zhǎng)的最小值.18.(12分)如圖所示,直角梯形ABCD中,,,,四邊形EDCF為矩形,,平面平面ABCD.(1)求證:平面ABE;(2)求平面ABE與平面EFB所成銳二面角的余弦值.(3)在線段DF上是否存在點(diǎn)P,使得直線BP與平面ABE所成角的正弦值為,若存在,求出線段BP的長(zhǎng),若不存在,請(qǐng)說明理由.19.(12分)如圖,正方體的棱長(zhǎng)為2,為棱的中點(diǎn).(1)面出過點(diǎn)且與直線垂直的平面,標(biāo)出該平面與正方體各個(gè)面的交線(不必說明畫法及理由);(2)求與該平面所成角的正弦值.20.(12分)已知函數(shù).(1)討論的單調(diào)性;(2)若函數(shù)在區(qū)間上的最小值為,求m的值.21.(12分)第十三屆全國(guó)人大常委會(huì)第十一次會(huì)議審議的《固體廢物污染環(huán)境防治法(修訂草案)》中,提出推行生活垃圾分類制度,這是生活垃圾分類首次被納入國(guó)家立法中.為了解某城市居民的垃圾分類意識(shí)與政府相關(guān)法規(guī)宣傳普及的關(guān)系,對(duì)某試點(diǎn)社區(qū)抽取戶居民進(jìn)行調(diào)查,得到如下的列聯(lián)表.分類意識(shí)強(qiáng)分類意識(shí)弱合計(jì)試點(diǎn)后試點(diǎn)前合計(jì)已知在抽取的戶居民中隨機(jī)抽取戶,抽到分類意識(shí)強(qiáng)的概率為.(1)請(qǐng)將上面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為居民分類意識(shí)的強(qiáng)弱與政府宣傳普及工作有關(guān)?說明你的理由;(2)已知在試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,有戶自覺垃圾分類在年以上,現(xiàn)在從試點(diǎn)前分類意識(shí)強(qiáng)的戶居民中,隨機(jī)選出戶進(jìn)行自覺垃圾分類年限的調(diào)查,記選出自覺垃圾分類年限在年以上的戶數(shù)為,求分布列及數(shù)學(xué)期望.參考公式:,其中.下面的臨界值表僅供參考22.(10分)在中,內(nèi)角的對(duì)邊分別是,滿足條件.(1)求角;(2)若邊上的高為,求的長(zhǎng).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】

畫出可行域和目標(biāo)函數(shù),根據(jù)平移得到最值點(diǎn),再利用均值不等式得到答案.【詳解】如圖所示,畫出可行域和目標(biāo)函數(shù),根據(jù)圖像知:當(dāng)時(shí),有最大值為,即,故..當(dāng),即時(shí)等號(hào)成立.故選:.【點(diǎn)睛】本題考查了線性規(guī)劃中根據(jù)最值求參數(shù),均值不等式,意在考查學(xué)生的綜合應(yīng)用能力.2.A【解析】

選取中間值和,利用對(duì)數(shù)函數(shù),和指數(shù)函數(shù)的單調(diào)性即可求解.【詳解】因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞增,所以,因?yàn)閷?duì)數(shù)函數(shù)在上單調(diào)遞減,所以,因?yàn)橹笖?shù)函數(shù)在上單調(diào)遞增,所以,綜上可知,.故選:A【點(diǎn)睛】本題考查利用對(duì)數(shù)函數(shù)和指數(shù)函數(shù)的單調(diào)性比較大小;考查邏輯思維能力和知識(shí)的綜合運(yùn)用能力;選取合適的中間值是求解本題的關(guān)鍵;屬于中檔題、常考題型.3.B【解析】

根據(jù)函數(shù)的一個(gè)零點(diǎn)是,得出,再根據(jù)是對(duì)稱軸,得出,求出的最小值與對(duì)應(yīng)的,寫出即可求出其單調(diào)增區(qū)間.【詳解】依題意得,,即,解得或(其中,).①又,即(其中).②由①②得或,即或(其中,,),因此的最小值為.因?yàn)?,所以(?又,所以,所以,令(),則().因此,當(dāng)取得最小值時(shí),的單調(diào)遞增區(qū)間是().故選:B【點(diǎn)睛】此題考查三角函數(shù)的對(duì)稱軸和對(duì)稱點(diǎn),在對(duì)稱軸處取得最值,對(duì)稱點(diǎn)處函數(shù)值為零,屬于較易題目.4.D【解析】

求的展開式中的常數(shù)項(xiàng),可轉(zhuǎn)化為求展開式中的常數(shù)項(xiàng)和項(xiàng),再求和即可得出答案.【詳解】由題意,中常數(shù)項(xiàng)為,中項(xiàng)為,所以的展開式中的常數(shù)項(xiàng)為:.故選:D【點(diǎn)睛】本題主要考查二項(xiàng)式定理的應(yīng)用和二項(xiàng)式展開式的通項(xiàng)公式,考查學(xué)生計(jì)算能力,屬于基礎(chǔ)題.5.C【解析】

求導(dǎo)分析函數(shù)在時(shí)的單調(diào)性、極值,可得時(shí),滿足題意,再在時(shí),求解的x的范圍,綜合可得結(jié)果.【詳解】當(dāng)時(shí),,令,則;,則,∴函數(shù)在單調(diào)遞增,在單調(diào)遞減.∴函數(shù)在處取得極大值為,∴時(shí),的取值范圍為,∴又當(dāng)時(shí),令,則,即,∴綜上所述,的取值范圍為.故選C.【點(diǎn)睛】本題考查了利用導(dǎo)數(shù)分析函數(shù)值域的方法,考查了分段函數(shù)的性質(zhì),屬于難題.6.C【解析】

作出可行域,直線目標(biāo)函數(shù)對(duì)應(yīng)的直線,平移該直線可得最優(yōu)解.【詳解】作出可行域,如圖由射線,線段,射線圍成的陰影部分(含邊界),作直線,平移直線,當(dāng)過點(diǎn)時(shí),取得最大值1.故選:C.【點(diǎn)睛】本題考查簡(jiǎn)單的線性規(guī)劃問題,解題關(guān)鍵是作出可行域,本題要注意可行域不是一個(gè)封閉圖形.7.C【解析】

設(shè)第一天走里,則是以為首項(xiàng),以為公比的等比數(shù)列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設(shè)第一天走里,則是以為首項(xiàng),以為公比的等比數(shù)列,由題意得:,解得(里,(里.故選:C.【點(diǎn)睛】本題考查等比數(shù)列的某一項(xiàng)的求法,考查等比數(shù)列等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.8.C【解析】

試題分析:將參數(shù)a與變量x分離,將不等式恒成立問題轉(zhuǎn)化為求函數(shù)最值問題,即可得到結(jié)論.解:不等式x2+ax+1≥0對(duì)一切x∈(0,]成立,等價(jià)于a≥-x-對(duì)于一切成立,∵y=-x-在區(qū)間上是增函數(shù)∴∴a≥-∴a的最小值為-故答案為C.考點(diǎn):不等式的應(yīng)用點(diǎn)評(píng):本題綜合考查了不等式的應(yīng)用、不等式的解法等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想,屬于中檔題9.D【解析】

本題首先可以通過題意畫出圖像并過點(diǎn)作垂線交于點(diǎn),然后通過圓與雙曲線的相關(guān)性質(zhì)判斷出三角形的形狀并求出高的長(zhǎng)度,的長(zhǎng)度即點(diǎn)縱坐標(biāo),然后將點(diǎn)縱坐標(biāo)帶入圓的方程即可得出點(diǎn)坐標(biāo),最后將點(diǎn)坐標(biāo)帶入雙曲線方程即可得出結(jié)果?!驹斀狻扛鶕?jù)題意可畫出以上圖像,過點(diǎn)作垂線并交于點(diǎn),因?yàn)?,在雙曲線上,所以根據(jù)雙曲線性質(zhì)可知,,即,,因?yàn)閳A的半徑為,是圓的半徑,所以,因?yàn)?,,,,所以,三角形是直角三角形,因?yàn)?,所以,,即點(diǎn)縱坐標(biāo)為,將點(diǎn)縱坐標(biāo)帶入圓的方程中可得,解得,,將點(diǎn)坐標(biāo)帶入雙曲線中可得,化簡(jiǎn)得,,,,故選D?!军c(diǎn)睛】本題考查了圓錐曲線的相關(guān)性質(zhì),主要考察了圓與雙曲線的相關(guān)性質(zhì),考查了圓與雙曲線的綜合應(yīng)用,考查了數(shù)形結(jié)合思想,體現(xiàn)了綜合性,提高了學(xué)生的邏輯思維能力,是難題。10.D【解析】

做出滿足條件的可行域,根據(jù)圖形即可求解.【詳解】做出滿足的可行域,如下圖陰影部分,根據(jù)圖象,當(dāng)目標(biāo)函數(shù)過點(diǎn)時(shí),取得最小值,由,解得,即,所以的最小值為.故選:D.【點(diǎn)睛】本題考查二元一次不等式組表示平面區(qū)域,利用數(shù)形結(jié)合求線性目標(biāo)函數(shù)的最值,屬于基礎(chǔ)題.11.C【解析】分析:從兩個(gè)方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當(dāng)三角形是鈍角三角形時(shí),也推不出成立,從而必要性也不滿足,從而選出正確的結(jié)果.詳解:由題意可得,在中,因?yàn)椋?,因?yàn)椋?,,結(jié)合三角形內(nèi)角的條件,故A,B同為銳角,因?yàn)椋?,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點(diǎn)睛:該題考查的是有關(guān)充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價(jià)轉(zhuǎn)化,余弦的和角公式,誘導(dǎo)公式等,需要明確對(duì)應(yīng)此類問題的解題步驟,以及三角形形狀對(duì)應(yīng)的特征.12.C【解析】

化簡(jiǎn)得到,得到答案.【詳解】,故,對(duì)應(yīng)點(diǎn)在第三象限.故選:.【點(diǎn)睛】本題考查了復(fù)數(shù)的化簡(jiǎn)和對(duì)應(yīng)象限,意在考查學(xué)生的計(jì)算能力.二、填空題:本題共4小題,每小題5分,共20分。13.0.18【解析】

根據(jù)表中信息,可得勝C的概率;分類討論B或D進(jìn)入決賽,再計(jì)算A勝B或A勝C的概率即可求解.【詳解】由表中信息可知,勝C的概率為;若B進(jìn)入決賽,B勝D的概率為,則A勝B的概率為;若D進(jìn)入決賽,D勝B的概率為,則A勝D的概率為;由相應(yīng)的概率公式知,則A獲得冠軍的概率為.故答案為:0.18【點(diǎn)睛】本題考查了獨(dú)立事件的概率應(yīng)用,互斥事件的概率求法,屬于基礎(chǔ)題.14.【解析】

利用已知條件,通過求解方程組即可得到結(jié)果.【詳解】設(shè)人數(shù)、物價(jià)分別為、,滿足,解得,.故答案為:;.【點(diǎn)睛】本題考查函數(shù)與方程的應(yīng)用,方程組的求解,考查計(jì)算能力,屬于基礎(chǔ)題.15.【解析】

根據(jù)分段函數(shù)的性質(zhì),即可求出的取值范圍.【詳解】當(dāng)時(shí),,,當(dāng)時(shí),,所以,故的取值范圍是.故答案為:.【點(diǎn)睛】本題考查分段函數(shù)的性質(zhì),已知分段函數(shù)解析式求參數(shù)范圍,還涉及對(duì)數(shù)和指數(shù)的運(yùn)算,屬于基礎(chǔ)題.16.【解析】

依據(jù)古典概型的計(jì)算公式,分別求“任取兩個(gè)數(shù)”和“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件數(shù),計(jì)算即可。【詳解】“任取兩個(gè)數(shù)”的事件數(shù)為,“任取兩個(gè)數(shù),和是質(zhì)數(shù)”的事件有(2,3),(2,5),(2,11)共3個(gè),所以任取兩個(gè)數(shù),這兩個(gè)數(shù)的和仍是質(zhì)數(shù)的概率是?!军c(diǎn)睛】本題主要考查古典概型的概率求法。三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】

(1)因?yàn)椋?,由余弦定理得,化?jiǎn)得,可得,解得,又因?yàn)?,所?(6分)(2)因?yàn)椋?,則(當(dāng)且僅當(dāng)時(shí),取等號(hào)).由(1)得(當(dāng)且僅當(dāng)時(shí),取等號(hào)),解得.所以(當(dāng)且僅當(dāng)時(shí),取等號(hào)),所以的周長(zhǎng)的最小值為.18.(I)見解析(II)(III)【解析】試題分析:(Ⅰ)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,由題意可得平面的法向量,且,據(jù)此有,則平面.(Ⅱ)由題意可得平面的法向量,結(jié)合(Ⅰ)的結(jié)論可得,即平面與平面所成銳二面角的余弦值為.(Ⅲ)設(shè),,則,而平面的法向量,據(jù)此可得,解方程有或.據(jù)此計(jì)算可得.試題解析:(Ⅰ)取為原點(diǎn),所在直線為軸,所在直線為軸建立空間直角坐標(biāo)系,如圖,則,,,,∴,,設(shè)平面的法向量,∴不妨設(shè),又,∴,∴,又∵平面,∴平面.(Ⅱ)∵,,設(shè)平面的法向量,∴不妨設(shè),∴,∴平面與平面所成銳二面角的余弦值為.(Ⅲ)設(shè),,∴,∴,又∵平面的法向量,∴,∴,∴或.當(dāng)時(shí),,∴;當(dāng)時(shí),,∴.綜上,.19.(1)見解析(2).【解析】

(1)與平面垂直,過點(diǎn)作與平面平行的平面即可(2)建立空間直角坐標(biāo)系求線面角正弦值【詳解】解:(1)截面如下圖所示:其中,,,,分別為邊,,,,的中點(diǎn),則垂直于平面.(2)建立如圖所示的空間直角坐標(biāo)系,則,,,,,所以,,.設(shè)平面的一個(gè)法向量為,則.不妨取,則,所以與該平面所成角的正弦值為.(若將作為該平面法向量,需證明與該平面垂直)【點(diǎn)睛】考查確定平面的方法以及線面角的求法,中檔題.20.(1)見解析(2)【解析】

(1)先求導(dǎo),再對(duì)m分類討論,求出的單調(diào)性;(2)對(duì)m分三種情況討論求函數(shù)在區(qū)間上的最小值即得解.【詳解】(1)若,當(dāng)時(shí),;當(dāng)時(shí).,所以在上單調(diào)遞增,在上單調(diào)遞減若.在R上單調(diào)遞增若,當(dāng)時(shí),;當(dāng)時(shí).,所以在上單調(diào)遞增,在上單調(diào)遞減(2)由(1)可知,當(dāng)時(shí),

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論