版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
山西省忻州巿第一中學(xué)2025年高三下學(xué)期第四次模擬考試數(shù)學(xué)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時(shí)請(qǐng)按要求用筆。3.請(qǐng)按照題號(hào)順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,其中左視圖中三角形為等腰直角三角形,則該幾何體外接球的體積是()A. B.C. D.2.某公園新購進(jìn)盆錦紫蘇、盆虞美人、盆郁金香,盆盆栽,現(xiàn)將這盆盆栽擺成一排,要求郁金香不在兩邊,任兩盆錦紫蘇不相鄰的擺法共()種A. B. C. D.3.高斯是德國著名的數(shù)學(xué)家,近代數(shù)學(xué)奠基者之一,享有“數(shù)學(xué)王子”的稱號(hào),用其名字命名的“高斯函數(shù)”為:設(shè),用表示不超過的最大整數(shù),則稱為高斯函數(shù),例如:,,已知函數(shù)(),則函數(shù)的值域?yàn)椋ǎ〢. B. C. D.4.從集合中隨機(jī)選取一個(gè)數(shù)記為,從集合中隨機(jī)選取一個(gè)數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.5.某裝飾公司制作一種扇形板狀裝飾品,其圓心角為120°,并在扇形弧上正面等距安裝7個(gè)發(fā)彩色光的小燈泡且在背面用導(dǎo)線相連(弧的兩端各一個(gè),導(dǎo)線接頭忽略不計(jì)),已知扇形的半徑為30厘米,則連接導(dǎo)線最小大致需要的長度為()A.58厘米 B.63厘米 C.69厘米 D.76厘米6.在等差數(shù)列中,若為前項(xiàng)和,,則的值是()A.156 B.124 C.136 D.1807.已知集合,若,則實(shí)數(shù)的取值范圍為()A. B. C. D.8.已知、分別為雙曲線:(,)的左、右焦點(diǎn),過的直線交于、兩點(diǎn),為坐標(biāo)原點(diǎn),若,,則的離心率為()A.2 B. C. D.9.已知,,,則的最小值為()A. B. C. D.10.已知隨機(jī)變量X的分布列如下表:X01Pabc其中a,b,.若X的方差對(duì)所有都成立,則()A. B. C. D.11.給出個(gè)數(shù),,,,,,其規(guī)律是:第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,以此類推,要計(jì)算這個(gè)數(shù)的和.現(xiàn)已給出了該問題算法的程序框圖如圖,請(qǐng)?jiān)趫D中判斷框中的①處和執(zhí)行框中的②處填上合適的語句,使之能完成該題算法功能()A.; B.;C.; D.;12.甲、乙、丙三人相約晚上在某地會(huì)面,已知這三人都不會(huì)違約且無兩人同時(shí)到達(dá),則甲第一個(gè)到、丙第三個(gè)到的概率是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的一條漸近線為,且經(jīng)過拋物線的焦點(diǎn),則雙曲線的標(biāo)準(zhǔn)方程為______.14.若,則__________.15.已知數(shù)列滿足,且恒成立,則的值為____________.16.在的展開式中,的系數(shù)為________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風(fēng)雨歷程,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現(xiàn)從年齡在,,內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機(jī)選取3人進(jìn)行座談,用表示年齡在)內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有名市民的年齡在的概率為.當(dāng)最大時(shí),求的值.18.(12分)在中,a,b,c分別是角A,B,C的對(duì)邊,并且.(1)已知_______________,計(jì)算的面積;請(qǐng)①,②,③這三個(gè)條件中任選兩個(gè),將問題(1)補(bǔ)充完整,并作答.注意,只需選擇其中的一種情況作答即可,如果選擇多種情況作答,以第一種情況的解答計(jì)分.(2)求的最大值.19.(12分)在平面四邊形(圖①)中,與均為直角三角形且有公共斜邊,設(shè),∠,∠,將沿折起,構(gòu)成如圖②所示的三棱錐,且使=.(1)求證:平面⊥平面;(2)求二面角的余弦值.20.(12分)已知點(diǎn),若點(diǎn)滿足.(Ⅰ)求點(diǎn)的軌跡方程;(Ⅱ)過點(diǎn)的直線與(Ⅰ)中曲線相交于兩點(diǎn),為坐標(biāo)原點(diǎn),求△面積的最大值及此時(shí)直線的方程.21.(12分)已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(-,0)、F2(,0).點(diǎn)M(1,0)與橢圓短軸的兩個(gè)端點(diǎn)的連線相互垂直.(1)求橢圓C的方程;(2)已知點(diǎn)N的坐標(biāo)為(3,2),點(diǎn)P的坐標(biāo)為(m,n)(m≠3).過點(diǎn)M任作直線l與橢圓C相交于A、B兩點(diǎn),設(shè)直線AN、NP、BN的斜率分別為k1、k2、k3,若k1+k3=2k2,試求m,n滿足的關(guān)系式.22.(10分)已知橢圓:,不與坐標(biāo)軸垂直的直線與橢圓交于,兩點(diǎn).(Ⅰ)若線段的中點(diǎn)坐標(biāo)為,求直線的方程;(Ⅱ)若直線過點(diǎn),點(diǎn)滿足(,分別為直線,的斜率),求的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.C【解析】
作出三視圖所表示幾何體的直觀圖,可得直觀圖為直三棱柱,并且底面為等腰直角三角形,即可求得外接球的半徑,即可得外接球的體積.【詳解】如圖為幾何體的直觀圖,上下底面為腰長為的等腰直角三角形,三棱柱的高為4,其外接球半徑為,所以體積為.故選:C本題考查三視圖還原幾何體的直觀圖、球的體積公式,考查空間想象能力、運(yùn)算求解能力,求解時(shí)注意球心的確定.2.B【解析】
間接法求解,兩盆錦紫蘇不相鄰,被另3盆隔開有,扣除郁金香在兩邊有,即可求出結(jié)論.【詳解】使用插空法,先排盆虞美人、盆郁金香有種,然后將盆錦紫蘇放入到4個(gè)位置中有種,根據(jù)分步乘法計(jì)數(shù)原理有,扣除郁金香在兩邊,排盆虞美人、盆郁金香有種,再將盆錦紫蘇放入到3個(gè)位置中有,根據(jù)分步計(jì)數(shù)原理有,所以共有種.故選:B.本題考查排列應(yīng)用問題、分步乘法計(jì)數(shù)原理,不相鄰問題插空法是解題的關(guān)鍵,屬于中檔題.3.B【解析】
利用換元法化簡解析式為二次函數(shù)的形式,根據(jù)二次函數(shù)的性質(zhì)求得的取值范圍,由此求得的值域.【詳解】因?yàn)椋ǎ?,令(),則(),函數(shù)的對(duì)稱軸方程為,所以,,所以,所以的值域?yàn)?故選:B本小題考查函數(shù)的定義域與值域等基礎(chǔ)知識(shí),考查學(xué)生分析問題,解決問題的能力,運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,換元思想,分類討論和應(yīng)用意識(shí).4.A【解析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計(jì)算出,再利用公式計(jì)算即可.【詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.本題考查利用定義計(jì)算條件概率的問題,涉及到雙曲線的定義,是一道容易題.5.B【解析】
由于實(shí)際問題中扇形弧長較小,可將導(dǎo)線的長視為扇形弧長,利用弧長公式計(jì)算即可.【詳解】因?yàn)榛¢L比較短的情況下分成6等分,所以每部分的弦長和弧長相差很小,可以用弧長近似代替弦長,故導(dǎo)線長度約為63(厘米).故選:B.本題主要考查了扇形弧長的計(jì)算,屬于容易題.6.A【解析】
因?yàn)椋傻?,根?jù)等差數(shù)列前項(xiàng)和,即可求得答案.【詳解】,,.故選:A.本題主要考查了求等差數(shù)列前項(xiàng)和,解題關(guān)鍵是掌握等差中項(xiàng)定義和等差數(shù)列前項(xiàng)和公式,考查了分析能力和計(jì)算能力,屬于基礎(chǔ)題.7.A【解析】
解一元二次不等式化簡集合的表示,求解函數(shù)的定義域化簡集合的表示,根據(jù)可以得到集合、之間的關(guān)系,結(jié)合數(shù)軸進(jìn)行求解即可.【詳解】,.因?yàn)椋杂?,因此?故選:A本題考查了已知集合運(yùn)算的結(jié)果求參數(shù)取值范圍問題,考查了解一元二次不等式,考查了函數(shù)的定義域,考查了數(shù)學(xué)運(yùn)算能力.8.D【解析】
作出圖象,取AB中點(diǎn)E,連接EF2,設(shè)F1A=x,根據(jù)雙曲線定義可得x=2a,再由勾股定理可得到c2=7a2,進(jìn)而得到e的值【詳解】解:取AB中點(diǎn)E,連接EF2,則由已知可得BF1⊥EF2,F(xiàn)1A=AE=EB,設(shè)F1A=x,則由雙曲線定義可得AF2=2a+x,BF1﹣BF2=3x﹣2a﹣x=2a,所以x=2a,則EF2=2a,由勾股定理可得(4a)2+(2a)2=(2c)2,所以c2=7a2,則e故選:D.本題考查雙曲線定義的應(yīng)用,考查離心率的求法,數(shù)形結(jié)合思想,屬于中檔題.對(duì)于圓錐曲線中求離心率的問題,關(guān)鍵是列出含有中兩個(gè)量的方程,有時(shí)還要結(jié)合橢圓、雙曲線的定義對(duì)方程進(jìn)行整理,從而求出離心率.9.B【解析】,選B10.D【解析】
根據(jù)X的分布列列式求出期望,方差,再利用將方差變形為,從而可以利用二次函數(shù)的性質(zhì)求出其最大值為,進(jìn)而得出結(jié)論.【詳解】由X的分布列可得X的期望為,又,所以X的方差,因?yàn)?所以當(dāng)且僅當(dāng)時(shí),取最大值,又對(duì)所有成立,所以,解得,故選:D.本題綜合考查了隨機(jī)變量的期望?方差的求法,結(jié)合了概率?二次函數(shù)等相關(guān)知識(shí),需要學(xué)生具備一定的計(jì)算能力,屬于中檔題.11.A【解析】
要計(jì)算這個(gè)數(shù)的和,這就需要循環(huán)50次,這樣可以確定判斷語句①,根據(jù)累加最的變化規(guī)律可以確定語句②.【詳解】因?yàn)橛?jì)算這個(gè)數(shù)的和,循環(huán)變量的初值為1,所以步長應(yīng)該為1,故判斷語句①應(yīng)為,第個(gè)數(shù)是,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,第個(gè)數(shù)比第個(gè)數(shù)大,這樣可以確定語句②為,故本題選A.本題考查了補(bǔ)充循環(huán)結(jié)構(gòu),正確讀懂題意是解本題的關(guān)鍵.12.D【解析】
先判斷是一個(gè)古典概型,列舉出甲、乙、丙三人相約到達(dá)的基本事件種數(shù),再得到甲第一個(gè)到、丙第三個(gè)到的基本事件的種數(shù),利用古典概型的概率公式求解.【詳解】甲、乙、丙三人相約到達(dá)的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6種,其中甲第一個(gè)到、丙第三個(gè)到有甲乙丙,共1種,所以甲第一個(gè)到、丙第三個(gè)到的概率是.故選:D本題主要考查古典概型的概率求法,還考查了理解辨析的能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
設(shè)以直線為漸近線的雙曲線的方程為,再由雙曲線經(jīng)過拋物線焦點(diǎn),能求出雙曲線方程.【詳解】解:設(shè)以直線為漸近線的雙曲線的方程為,∵雙曲線經(jīng)過拋物線焦點(diǎn),∴,∴雙曲線方程為,故答案為:.本題主要考查雙曲線方程的求法,考查拋物線、雙曲線簡單性質(zhì)的合理運(yùn)用,屬于中檔題.14.【解析】
由已知利用兩角差的正弦函數(shù)公式可得,兩邊平方,由同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式即可計(jì)算得解.【詳解】,得,在等式兩邊平方得,解得.故答案為:.本題主要考查了兩角差的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式,二倍角的正弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.15.【解析】
易得,所以是等差數(shù)列,再利用等差數(shù)列的通項(xiàng)公式計(jì)算即可.【詳解】由已知,,因,所以,所以數(shù)列是以為首項(xiàng),3為公差的等差數(shù)列,故,所以.故答案為:本題考查由遞推數(shù)列求數(shù)列中的某項(xiàng),考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.16.【解析】
根據(jù)二項(xiàng)展開式定理,求出含的系數(shù)和含的系數(shù),相乘即可.【詳解】的展開式中,所求項(xiàng)為:,的系數(shù)為.
故答案為:.本題考查二項(xiàng)展開式定理的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)分布列見解析,(1)【解析】
(1)根據(jù)頻率分布直方圖及抽取總?cè)藬?shù),結(jié)合各組頻率值即可求得各組抽取的人數(shù);的可能取值為0,1,1,由離散型隨機(jī)變量概率求法即可求得各概率值,即可得分布列;由數(shù)學(xué)期望公式即可求得其數(shù)學(xué)期望.(1)先求得年齡在內(nèi)的頻率,視為概率.結(jié)合二項(xiàng)分布的性質(zhì),表示出,令,化簡后可證明其單調(diào)性及取得最大值時(shí)的值.【詳解】(1)按分層抽樣的方法拉取的8人中,年齡在的人數(shù)為人,年齡在內(nèi)的人數(shù)為人.年齡在內(nèi)的人數(shù)為人.所以的可能取值為0,1,1.所以,,,所以的分市列為011.(1)設(shè)在抽取的10名市民中,年齡在內(nèi)的人數(shù)為,服從二項(xiàng)分布.由頻率分布直方圖可知,年齡在內(nèi)的頻率為,所以,所以.設(shè),若,則,;若,則,.所以當(dāng)時(shí),最大,即當(dāng)最大時(shí),.本題考差了離散型隨機(jī)變量分布列及數(shù)學(xué)期望的求法,二項(xiàng)分布的綜合應(yīng)用,屬于中檔題.18.(1)見解析(2)1【解析】
(1)選②,③.可得,結(jié)合,求得.即可;若選①,②.由可得由,求得.即可;若選①,③,可得,又,可得,即可;(2)化簡,根據(jù)角的范圍求最值即可.【詳解】(1)若選②,③.,,,,又,.的面積.若選①,②.由可得,,,又,.的面積.若選①,③,,又,,可得,的面積.(2),當(dāng)時(shí),有最大值1.本題考查了正余弦定理,三角三角恒等變形,考查了計(jì)算能力,屬于中檔題.19.(1)證明見解析;(2)【解析】
(1)取AB的中點(diǎn)O,連接,證得,從而證得C′O⊥平面ABD,再結(jié)合面面垂直的判定定理,即可證得平面⊥平面;(2)以O(shè)為原點(diǎn),AB,OC所在的直線為y軸,z軸,建立的空間直角坐標(biāo)系,求得平面和平面的法向量,利用向量的夾角公式,即可求解.【詳解】(1)取AB的中點(diǎn)O,連接,,在Rt△和Rt△ADB中,AB=2,則=DO=1,又C′D=,所以,即⊥OD,又⊥AB,且AB∩OD=O,平面ABD,所以⊥平面ABD,又C′O?平面,所以平面⊥平面DAB(2)以O(shè)為原點(diǎn),AB,OC所在的直線為y軸,z軸,建立如圖所示的空間直角坐標(biāo)系,則A(0,-1,0),B(0,1,0),C′(0,0,1),,所以,,,設(shè)平面的法向量為=(),則,即,代入坐標(biāo)得,令,得,,所以,設(shè)平面的法向量為=(),則,即,代入坐標(biāo)得,令,得,,所以,所以,所以二面角A-C′D-B的余弦值為.本題考查了面面垂直的判定與證明,以及空間角的求解問題,意在考查學(xué)生的空間想象能力和邏輯推理能力,解答中熟記線面位置關(guān)系的判定定理和性質(zhì)定理,通過嚴(yán)密推理是線面位置關(guān)系判定的關(guān)鍵,同時(shí)對(duì)于立體幾何中角的計(jì)算問題,往往可以利用空間向量法,通過求解平面的法向量,利用向量的夾角公式求解.20.(Ⅰ);(Ⅱ)面積的最大值為,此時(shí)直線的方程為.【解析】
(1)根據(jù)橢圓的定義求解軌跡方程;(2)設(shè)出直線方程后,采用(表示原點(diǎn)到直線的距離)表示面積,最后利用基本不等式求解最值.【詳解】解:(Ⅰ)由定義法可得,點(diǎn)的軌跡為橢圓且,.因此橢圓的方程為.(Ⅱ)設(shè)直線的方程為與橢圓交于點(diǎn),,聯(lián)立直線與橢圓的方程消去可得,即,.面積可表示為令,則,上式可化為,當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,因此面積的最大值為,此時(shí)直線的方程為.常見的利用定義法求解曲線的軌跡方程問題:(1)已知點(diǎn),若點(diǎn)滿足且,則的軌跡是橢圓;(2)已知點(diǎn),若點(diǎn)滿足且,則的軌跡是雙曲線.21.(1);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025海南省安全員-B證(項(xiàng)目經(jīng)理)考試題庫
- 2025年-遼寧省安全員知識(shí)題庫
- 2025青海省安全員B證考試題庫及答案
- 2025年湖北省安全員A證考試題庫附答案
- 2025遼寧建筑安全員考試題庫及答案
- 建筑用花崗巖開采及建筑用碎石、機(jī)制砂加工項(xiàng)目可行性研究報(bào)告模板-備案拿地
- 英語英語時(shí)態(tài)課件
- 一年級(jí)語文《-jqx》課件
- 單位管理制度展示匯編【人事管理】
- 單位管理制度展示大全職員管理篇十篇
- 北師大版五年級(jí)數(shù)學(xué)下冊第3單元第2課時(shí)分?jǐn)?shù)乘法(二)課件
- 教育部中國特色學(xué)徒制課題:中國特色學(xué)徒制制度設(shè)計(jì)與運(yùn)行機(jī)制研究
- 城市規(guī)劃思想史
- 山東師范大學(xué)新聞采訪期末復(fù)習(xí)題
- 讓與擔(dān)保合同協(xié)議范本
- 住宅設(shè)計(jì)效果圖協(xié)議書
- 新版中國食物成分表
- 2024河南鄭州市金水區(qū)事業(yè)單位招聘45人歷年高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 食物損失和浪費(fèi)控制程序
- TCI 373-2024 中老年人免散瞳眼底疾病篩查規(guī)范
- 2024四川太陽能輻射量數(shù)據(jù)
評(píng)論
0/150
提交評(píng)論