版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2025年蘇州大學(xué)附屬中學(xué)高三5月第一次單元測(cè)試-數(shù)學(xué)試題試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)、考場(chǎng)號(hào)和座位號(hào)填寫(xiě)在試題卷和答題卡上。用2B鉛筆將試卷類(lèi)型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對(duì)應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫(xiě)在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來(lái)的答案,然后再寫(xiě)上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無(wú)效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知變量,滿足不等式組,則的最小值為()A. B. C. D.2.執(zhí)行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.3.在復(fù)平面內(nèi),復(fù)數(shù)(為虛數(shù)單位)對(duì)應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.若函數(shù)函數(shù)只有1個(gè)零點(diǎn),則的取值范圍是()A. B. C. D.5.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()6.設(shè)為拋物線的焦點(diǎn),,,為拋物線上三點(diǎn),若,則().A.9 B.6 C. D.7.某設(shè)備使用年限x(年)與所支出的維修費(fèi)用y(萬(wàn)元)的統(tǒng)計(jì)數(shù)據(jù)分別為,,,,由最小二乘法得到回歸直線方程為,若計(jì)劃維修費(fèi)用超過(guò)15萬(wàn)元將該設(shè)備報(bào)廢,則該設(shè)備的使用年限為()A.8年 B.9年 C.10年 D.11年8.已知向量,,設(shè)函數(shù),則下列關(guān)于函數(shù)的性質(zhì)的描述正確的是A.關(guān)于直線對(duì)稱(chēng) B.關(guān)于點(diǎn)對(duì)稱(chēng)C.周期為 D.在上是增函數(shù)9.已知角的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與軸的非負(fù)半軸重合,它的終邊過(guò)點(diǎn),則的值為()A. B. C. D.10.已知單位向量,的夾角為,若向量,,且,則()A.2 B.2 C.4 D.611.函數(shù)(其中,,)的圖象如圖,則此函數(shù)表達(dá)式為()A. B.C. D.12.圓柱被一平面截去一部分所得幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在某批次的某種燈泡中,隨機(jī)抽取200個(gè)樣品.并對(duì)其壽命進(jìn)行追蹤調(diào)查,將結(jié)果列成頻率分布表如下:壽命(天)頻數(shù)頻率40600.30.4200.1合計(jì)2001某人從燈泡樣品中隨機(jī)地購(gòu)買(mǎi)了個(gè),如果這個(gè)燈泡的壽命情況恰好與按四個(gè)組分層抽樣所得的結(jié)果相同,則的最小值為_(kāi)_____.14.已知為矩形的對(duì)角線的交點(diǎn),現(xiàn)從這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),則這3個(gè)點(diǎn)不共線的概率為_(kāi)_______.15.已知函數(shù).若在區(qū)間上恒成立.則實(shí)數(shù)的取值范圍是__________.16.從甲、乙等8名志愿者中選5人參加周一到周五的社區(qū)服務(wù),每天安排一人,每人只參加一天.若要求甲、乙兩人至少選一人參加,且當(dāng)甲、乙兩人都參加時(shí),他們參加社區(qū)服務(wù)的日期不相鄰,那么不同的安排種數(shù)為_(kāi)_____________.(用數(shù)字作答)三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)已知函數(shù),曲線在點(diǎn)處的切線方程為.(1)求,的值;(2)證明函數(shù)存在唯一的極大值點(diǎn),且.18.(12分)如圖,是矩形,的頂點(diǎn)在邊上,點(diǎn),分別是,上的動(dòng)點(diǎn)(的長(zhǎng)度滿足需求).設(shè),,,且滿足.(1)求;(2)若,,求的最大值.19.(12分)在新中國(guó)成立70周年國(guó)慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對(duì)祖國(guó)的熱愛(ài)之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).(1)當(dāng)時(shí),求M點(diǎn)的極坐標(biāo);(2)將射線OM繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.20.(12分)在平面直角坐標(biāo)系中,橢圓:的右焦點(diǎn)為(,為常數(shù)),離心率等于0.8,過(guò)焦點(diǎn)、傾斜角為的直線交橢圓于、兩點(diǎn).⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若時(shí),,求實(shí)數(shù);⑶試問(wèn)的值是否與的大小無(wú)關(guān),并證明你的結(jié)論.21.(12分)在四邊形中,,;如圖,將沿邊折起,連結(jié),使,求證:(1)平面平面;(2)若為棱上一點(diǎn),且與平面所成角的正弦值為,求二面角的大小.22.(10分)已知函數(shù).(1)時(shí),求不等式解集;(2)若的解集包含于,求a的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.B【解析】
先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值.【詳解】解:由變量,滿足不等式組,畫(huà)出相應(yīng)圖形如下:可知點(diǎn),,在處有最小值,最小值為.故選:B.本題主要考查簡(jiǎn)單的線性規(guī)劃,運(yùn)用了數(shù)形結(jié)合的方法,屬于基礎(chǔ)題.2.B【解析】
運(yùn)行程序,依次進(jìn)行循環(huán),結(jié)合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環(huán)后,,第二次循環(huán)后,,第三次循環(huán)后,,第四次循環(huán)后,,所有后面的循環(huán)具有周期性,周期為3,當(dāng)時(shí),再次循環(huán)輸出的,,此時(shí),循環(huán)結(jié)束,輸出,故選:B本題主要考查程序框圖的相關(guān)知識(shí),經(jīng)過(guò)幾次循環(huán)找出規(guī)律是關(guān)鍵,屬于基礎(chǔ)題型.3.C【解析】
化簡(jiǎn)復(fù)數(shù)為、的形式,可以確定對(duì)應(yīng)的點(diǎn)位于的象限.【詳解】解:復(fù)數(shù)故復(fù)數(shù)對(duì)應(yīng)的坐標(biāo)為位于第三象限故選:.本題考查復(fù)數(shù)代數(shù)形式的運(yùn)算,復(fù)數(shù)和復(fù)平面內(nèi)點(diǎn)的對(duì)應(yīng)關(guān)系,屬于基礎(chǔ)題.4.C【解析】
轉(zhuǎn)化有1個(gè)零點(diǎn)為與的圖象有1個(gè)交點(diǎn),求導(dǎo)研究臨界狀態(tài)相切時(shí)的斜率,數(shù)形結(jié)合即得解.【詳解】有1個(gè)零點(diǎn)等價(jià)于與的圖象有1個(gè)交點(diǎn).記,則過(guò)原點(diǎn)作的切線,設(shè)切點(diǎn)為,則切線方程為,又切線過(guò)原點(diǎn),即,將,代入解得.所以切線斜率為,所以或.故選:C本題考查了導(dǎo)數(shù)在函數(shù)零點(diǎn)問(wèn)題中的應(yīng)用,考查了學(xué)生數(shù)形結(jié)合,轉(zhuǎn)化劃歸,數(shù)學(xué)運(yùn)算的能力,屬于較難題.5.D【解析】
由題意利用兩個(gè)向量坐標(biāo)形式的運(yùn)算法則,兩個(gè)向量平行、垂直的性質(zhì),得出結(jié)論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標(biāo)對(duì)應(yīng)不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標(biāo)對(duì)應(yīng)不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.本題主要考查兩個(gè)向量坐標(biāo)形式的運(yùn)算,兩個(gè)向量平行、垂直的性質(zhì),屬于基礎(chǔ)題.6.C【解析】
設(shè),,,由可得,利用定義將用表示即可.【詳解】設(shè),,,由及,得,故,所以.故選:C.本題考查利用拋物線定義求焦半徑的問(wèn)題,考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.7.D【解析】
根據(jù)樣本中心點(diǎn)在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計(jì)第年維修費(fèi)用超過(guò)15萬(wàn)元.故選:D.本題考查回歸直線過(guò)樣本中心點(diǎn)、以及回歸方程的應(yīng)用,屬于基礎(chǔ)題.8.D【解析】
當(dāng)時(shí),,∴f(x)不關(guān)于直線對(duì)稱(chēng);當(dāng)時(shí),,∴f(x)關(guān)于點(diǎn)對(duì)稱(chēng);f(x)得周期,當(dāng)時(shí),,∴f(x)在上是增函數(shù).本題選擇D選項(xiàng).9.B【解析】
根據(jù)三角函數(shù)定義得到,故,再利用和差公式得到答案.【詳解】∵角的終邊過(guò)點(diǎn),∴,.∴.故選:.本題考查了三角函數(shù)定義,和差公式,意在考查學(xué)生的計(jì)算能力.10.C【解析】
根據(jù)列方程,由此求得的值,進(jìn)而求得.【詳解】由于,所以,即,解得.所以所以.故選:C本小題主要考查向量垂直的表示,考查向量數(shù)量積的運(yùn)算,考查向量模的求法,屬于基礎(chǔ)題.11.B【解析】
由圖象的頂點(diǎn)坐標(biāo)求出,由周期求出,通過(guò)圖象經(jīng)過(guò)點(diǎn),求出,從而得出函數(shù)解析式.【詳解】解:由圖象知,,則,圖中的點(diǎn)應(yīng)對(duì)應(yīng)正弦曲線中的點(diǎn),所以,解得,故函數(shù)表達(dá)式為.故選:B.本題主要考查三角函數(shù)圖象及性質(zhì),三角函數(shù)的解析式等基礎(chǔ)知識(shí);考查考生的化歸與轉(zhuǎn)化思想,數(shù)形結(jié)合思想,屬于基礎(chǔ)題.12.B【解析】
三視圖對(duì)應(yīng)的幾何體為如圖所示的幾何體,利用割補(bǔ)法可求其體積.【詳解】根據(jù)三視圖可得原幾何體如圖所示,它是一個(gè)圓柱截去上面一塊幾何體,把該幾何體補(bǔ)成如下圖所示的圓柱,其體積為,故原幾何體的體積為.故選:B.本題考查三視圖以及不規(guī)則幾何體的體積,復(fù)原幾何體時(shí)注意三視圖中的點(diǎn)線關(guān)系與幾何體中的點(diǎn)、線、面的對(duì)應(yīng)關(guān)系,另外,不規(guī)則幾何體的體積可用割補(bǔ)法來(lái)求其體積,本題屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.10【解析】
先求出a,b,根據(jù)分層抽樣的比例引入正整數(shù)k表示n,從而得出的最小值.【詳解】由題意得,a=0.2,b=80,由表可知,燈泡樣品第一組有40個(gè),第二組有60個(gè),第三組有80個(gè),第四組有20個(gè),所以四個(gè)組的比例為2:3:4:1,所以按分層抽樣法,購(gòu)買(mǎi)的燈泡數(shù)為n=2k+3k+4k+k=10k(),所以的最小值為10.本題考查分層抽樣基本原理的應(yīng)用,涉及抽樣比、總體數(shù)量、每層樣本數(shù)量的計(jì)算,屬于基礎(chǔ)題.14.【解析】
基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,由此能求出這3個(gè)點(diǎn)不共線的概率.【詳解】解:為矩形的對(duì)角線的交點(diǎn),現(xiàn)從,,,,這5個(gè)點(diǎn)中任選3個(gè)點(diǎn),基本事件總數(shù),這3個(gè)點(diǎn)共線的情況有兩種和,這3個(gè)點(diǎn)不共線的概率為.故答案為:.本題考查概率的求法,考查對(duì)立事件概率計(jì)算公式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.15.【解析】
首先解不等式,再由在區(qū)間上恒成立,即得到不等組,解得即可.【詳解】解:且,即解得,即因?yàn)樵趨^(qū)間上恒成立,解得即故答案為:本題考查一元二次不等式及函數(shù)的綜合問(wèn)題,屬于基礎(chǔ)題.16.5040.【解析】分兩類(lèi),一類(lèi)是甲乙都參加,另一類(lèi)是甲乙中選一人,方法數(shù)為。填5040.利用排列組合計(jì)數(shù)時(shí),關(guān)鍵是正確進(jìn)行分類(lèi)和分步,分類(lèi)時(shí)要注意不重不漏.在本題中,甲與乙是兩個(gè)特殊元素,對(duì)于特殊元素“優(yōu)先法”,所以有了分類(lèi)。本題還涉及不相鄰問(wèn)題,采用“插空法”。三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(1)(2)證明見(jiàn)解析【解析】
(1)求導(dǎo),可得(1),(1),結(jié)合已知切線方程即可求得,的值;(2)利用導(dǎo)數(shù)可得,,再構(gòu)造新函數(shù),利用導(dǎo)數(shù)求其最值即可得證.【詳解】(1)函數(shù)的定義域?yàn)?,,則(1),(1),故曲線在點(diǎn),(1)處的切線方程為,又曲線在點(diǎn),(1)處的切線方程為,,;(2)證明:由(1)知,,則,令,則,易知在單調(diào)遞減,又,(1),故存在,使得,且當(dāng)時(shí),,單調(diào)遞增,當(dāng),時(shí),,單調(diào)遞減,由于,(1),(2),故存在,使得,且當(dāng)時(shí),,,單調(diào)遞增,當(dāng),時(shí),,,單調(diào)遞減,故函數(shù)存在唯一的極大值點(diǎn),且,即,則,令,則,故在上單調(diào)遞增,由于,故(2),即,.本題考查導(dǎo)數(shù)的幾何意義以及利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,極值及最值,考查推理論證能力,屬于中檔題.18.(1)(2)【解析】
(1)利用正弦定理和余弦定理化簡(jiǎn),根據(jù)勾股定理逆定理求得.(2)設(shè),由此求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè),,,由,根據(jù)正弦定理和余弦定理得.化簡(jiǎn)整理得.由勾股定理逆定理得.(2)設(shè),,由(1)的結(jié)論知.在中,,由,所以.在中,,由,所以.所以,由,所以當(dāng),即時(shí),取得最大值,且最大值為.本小題考查正弦定理,余弦定理,勾股定理,解三角形,三角函數(shù)性質(zhì)及其三角恒等變換等基礎(chǔ)知識(shí);考查運(yùn)算求解能力,推理論證能力,化歸與轉(zhuǎn)換思想,應(yīng)用意識(shí).19.(1)點(diǎn)M的極坐標(biāo)為或(2)【解析】
(1)令,由此求得的值,進(jìn)而求得點(diǎn)的極坐標(biāo).(2)設(shè)出兩點(diǎn)的極坐標(biāo),利用勾股定理求得的表達(dá)式,利用三角函數(shù)最值的求法,求得的最大值.【詳解】(1)設(shè)點(diǎn)M在極坐標(biāo)系中的坐標(biāo),由,得,∵∴或,所以點(diǎn)M的極坐標(biāo)為或(2)由題意可設(shè),.由,得,.故時(shí),的最大值為.本小題主要考查極坐標(biāo)的求法,考查極坐標(biāo)下兩點(diǎn)間距離的計(jì)算以及距離最值的求法,屬于中檔題.20.(1)(2)(3)為定值【解析】試題分析:(1)利用待定系數(shù)法可得,橢圓方程為;(2)我們要知道=的條件應(yīng)用,在于直線交橢圓兩交點(diǎn)M,N的橫坐標(biāo)為,這樣代入橢圓方程,容易得到,從而解得;(3)需討論斜率是否存在.一方面斜率不存在即=時(shí),由(2)得;另一方面,當(dāng)斜率存在即時(shí),可設(shè)直線的斜率為,得直線MN:,聯(lián)立直線與橢圓方程,利用韋達(dá)定理和焦半徑公式,就能得到,所以為定值,與直線的傾斜角的大小無(wú)關(guān)試題解析:(1),得:,橢圓方程為(2)當(dāng)時(shí),,得:,于是當(dāng)=時(shí),,于是,得到(3)①當(dāng)=時(shí),由(2)知②當(dāng)時(shí),設(shè)直線的斜率為,,則直線MN:聯(lián)立橢圓方程有,,,=+==得綜上,為定值,與直線的傾斜角的大小無(wú)關(guān)考點(diǎn):(1)待定系數(shù)求橢圓方程;(2)橢圓簡(jiǎn)單的幾何性質(zhì);(3)直線與圓錐曲線21.(1)證明見(jiàn)詳解;(2)【解析】
(1)由題可知,等腰直角三角形與等邊三角形,在其公共邊AC上取中點(diǎn)O,連接、,可得,可求出.在中,由勾股定理可證得,結(jié)合,可證明平面.再根據(jù)面面垂直的判定定理,可證平面平面.(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,由點(diǎn)F在線段上,設(shè),得出的坐標(biāo),進(jìn)而求出平面的一個(gè)法向量.用向量法表示出與平面所成角的正弦值,由其等于,解得.再結(jié)合為平面的一個(gè)法向量,用向量法即可求出與的夾角,結(jié)合圖形,寫(xiě)出二面角的大小.【詳解】證明:(1)在中,為正三角形,且在中,為等腰直角三角形,且取的中點(diǎn),連接,,,平面平面平面..平面平面(2)以為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,設(shè).則設(shè)平面的一個(gè)法向量為.則,令,解得與平面所成角的正弦值為,整理得解得或(含去)又為平面的一個(gè)法
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年傳染病防治獸藥項(xiàng)目規(guī)劃申請(qǐng)報(bào)告
- 2025年建筑安裝服務(wù)項(xiàng)目提案報(bào)告
- 2024-2025學(xué)年硯山縣數(shù)學(xué)三上期末質(zhì)量檢測(cè)試題含解析
- 2025年果蔬罐頭加工項(xiàng)目提案報(bào)告
- 2025年低碳小鎮(zhèn)項(xiàng)目規(guī)劃申請(qǐng)報(bào)告模板
- 專(zhuān)家邀請(qǐng)函范文錦集六篇
- 質(zhì)量承諾書(shū)模板集合8篇
- 上海裝修施工合同
- 學(xué)生軍訓(xùn)心得體會(huì)(集合15篇)
- 電子商務(wù)實(shí)習(xí)自我鑒定9篇
- 2024年精美《婚姻法》課件模板:法律教育的新趨勢(shì)
- 肺部感染性疾病支氣管肺泡灌洗病原體檢測(cè)中國(guó)專(zhuān)家共識(shí)(2017年)
- 第六單元《多邊形的面積》 單元測(cè)試(含答案)2024-2025學(xué)年人教版五年級(jí)數(shù)學(xué)上冊(cè)
- 小學(xué)勞動(dòng)教育實(shí)施情況調(diào)查問(wèn)卷(含教師卷和學(xué)生卷)及調(diào)查結(jié)論
- 光伏電站安裝與調(diào)試教學(xué)培訓(xùn)課件:太陽(yáng)能光伏發(fā)電系統(tǒng)概論
- 【部編】人教版六年級(jí)上冊(cè)道德與法治全冊(cè)知識(shí)點(diǎn)總結(jié)梳理
- 平安在線測(cè)評(píng) iq 30題 答案
- 食品公司安全生產(chǎn)管理制度
- 智慧物流第2套理論題附有答案
- 網(wǎng)絡(luò)設(shè)備駐場(chǎng)運(yùn)維服務(wù)方案
- 2024-2030年中國(guó)功效性護(hù)膚品市場(chǎng)需求量調(diào)研及發(fā)展態(tài)勢(shì)分析研究報(bào)告
評(píng)論
0/150
提交評(píng)論